검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 5

        1.
        2023.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : Traffic volume, an important basic data in the field of road traffic, is collected from traffic survey equipment installed at certain locations, which sometimes results in missing traffic volume data and abnormal detection. Therefore, this study presents various missing correction techniques using traffic characteristic analysis to obtain accurate traffic volume statistics. METHODS : The fundamental premise behind the development of a traffic volume correction and prediction model is to set the corrected data as the reference value, and the traffic volume correction and prediction process for the outliers and missing values in the raw data were performed based on the set values. RESULTS : The simulation results confirmed that the algorithm combining seasonal composition, quantile AD, and aggregation techniques showed a detection performance of more than 91% compared with actual values. CONCLUSIONS : Raw data collected due to difficulties faced by traffic survey equipment will result in missing traffic volume data and abnormal detection. If these abnormal data are used without appropriate corrections, it is difficult to accurately predict traffic demand. Therefore, it is necessary to improve the accuracy of demand prediction through characteristic analysis and the correction of missing data or outliers in the traffic data.
        4,000원
        5.
        2005.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        현재 국내의 차종 분류 기준은 그 조사목적과 조사지점에 따라 이원화되어 운영되고 있다. 고속국도와 지방도의 경우는 8종 분류 기준이 그리고 일반국도의 경우는 11종 분류 기준이 활용되고 있는데, 이러한 이원화된 분류 기준은 자료 활용의 효율성을 저하시키고 있는 실정이다. 본 연구는 이러한 이원화된 차종 분류 기준의 문제점을 해결하기 위해 통합된 차종 분류 기준을 제시하고 있다. 분류 기준은 차량 제원에 의한 기계식 조사에 초점을 맞추었으며, 현장 조사의 문제점을 완화하기 위해 인력식 조사에도 적용이 가능하도록 설정되었다. 제안된 차종 분류 기준은 차량의 다양화 및 대형화 추세를 반영하고, 기타 차종 분류 기준과의 호환성을 고려하고 있어 보다 합리적인 차종 분류 기준이라 할 수 있다.
        4,300원