검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 3

        1.
        2024.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study compared the climatic conditions and fruit quality of the ‘Shiranuhi’ mandarin. This variety is expanding to inland areas due to climate change and global warming. The main producing area of ‘Shiranuhi’ mandarin is Jeju Island. In the inland areas where ‘Shiranuhi’ mandarin is grown, the average temperature is 12.9-13.9℃, which is 3-4℃ lower than the temperature in Seogwipo (16.9℃) on Jeju Island. In these inland areas, there are frequent critical minimum temperatures (below –3℃) in January or February, making the open field temperatures unsuitable for growing ‘Shiranuhi’ mandarins. However, farmers in these areas have managed to mitigate this risk by maintaining an average temperature of 18.3℃ inside plastic houses, which are actively heated from December to March. The earliest full bloom of ‘Shiranuhi’ was recorded in Jindo, Jeollanam-do on April 10. The earliest harvest date was observed in Seogwipo, Jeju on January 9, which indicates the shortest maturity period of 272 days. The cumulative temperature inside the greenhouse was highest in Wanju, Jeollabuk-do at 5,755℃. Buan, Jeollabuk-do (5,517℃) and Seogwipo, Jeju (5,518℃) had nearly identical temperatures. Significant differences in fruit quality were observed between the inland areas and Jeju Island. These differences were observed in fruit length, summit length, firmness, and the CIE b* value of the peel. The climate differences seem to have a greater influence on the factors that determine the fruit shape among the fruit quality characteristics. The yield per tree was higher in Seogwipo, Jeju (38.3kg) compared to the inland areas (30 to 34kg). Inland areas predominantly featured medium to small fruits (251-300g), while Jeju Island had a higher proportion of larger fruits (over 350g).
        4,000원
        2.
        2001.06 KCI 등재 SCOPUS 서비스 종료(열람 제한)
        Kiyomi tangor(Citus unshiu x sinensis) was stored at 3 and 85% relative humidity, and the changes in firmness, pectin degrading enzymes activity and other physicochemical properties of citrus fruits during storage were investigated. Decay ratio and weight loss during 180 days’ storage were increased gradually to 13.0% and 12.9%, respectively. Firmness of fruits with 2 mm probe was decreased gradually from 808.7 g-force to 406.4 g-force, and moisture of peel and flesh were decreased from 76.5% to from 89.6% to 87.6% during storage, respectively. Exo-polygalacturonase activity of peel after 150 days’ storage were increased gradually to 558.09 units/100g. Pectin methylesterase activity of peel and flesh were increased from 14.7 units/g to 2.3 units/g, and from 9.4 units/ml to 2.7 units/ml at 150days’ storage, respectively. Endo-polygalacturonase activities were not changed notably during storage. Alcohol-insoluble solid(AIS) of peel was not changed notably. During storage of the fruits water soluble pectin(WSP) of peel and flesh were increased from 474.49 mg/100g to 614.29mg/100g, and from 66.91mg/100g to 92.74mg/100g as wet basis, respectively. Hexameta-phosphate soluble pectin(HMP) of peel were decreased from 405.5mg/100g to 270.43mg/100g, hydochloric acid soluble pectin(HSP) of peel was also decreased from 544.02mg/100g to 412.64mg/100g during storage. Total pectin substance(TPS) of peel and flesh were decreased from 1,424.01mg/100g to 1,297.36mg/100g, and from 165.51mg/100g to 171.54mg/100g, respectively. Composition ratio of pectin was in order of WSP > HSP > HMP.
        3.
        1996.06 KCI 등재 SCOPUS 서비스 종료(열람 제한)
        Physicochemical properties and the conditions of cold storage of kiyomi clangor(Citrus unshiu x sinensis) produced in Cheju were investigated. Firmness, edible part ratio, soluble solids, and acid content were decreased gradually with incurasing fruit size. Carbohydrates in juice were consisted of 65.12% sucrose, 19.65% fructose, and 15.23% glucose The main organic acrid In juice was 57.4% of citric acid, and others were lactic acid, malic acid, oxalic acid and fumaric acid, respectively. Weight loss were occured very. slowly to about 6% till late of May, but decayed fruits were occurred very slowly to about 6% till late of May, but decayed fruits were arisen to about 8% at 3, and about 13% at 5 of storage temperature. The changes of peel moisture content, soluble solids, total sugar, vitaamin C, and density of fruits were slightly occured during cold storage. Cold storage at 3 and 87% relative humidity kept freshness of citrus fruits for a long-term without damage of cold injury.