검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 3

        1.
        2022.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The process of biological invasion is led by the dynamics of a population as a demographic and evolutionary unit. Spatial structure can affect the population dynamics, and it is worth being considered in research on biological invasion which is always accompanied by dispersal. Metapopulation theory is a representative approach to spatially structured populations, which is chiefly applied in the field of ecology and evolutionary biology despite the controversy about its definition. In this study, metapopulation was considered as a spatially structured population that includes at least one subpopulation with significant extinction probability. The early phase of the invasion is suitable to be analyzed in aspects of the metapopulation concept because the introduced population usually has a high extinction probability, and their ecological·genetic traits determining the invasiveness can be affected by the metapopulation structure. Although it is important in the explanation of the prediction of the invasion probability, the metapopulation concept is rarely used in ecological research about biological invasion in Korea. It is expected that applying the metapopulation theory can supply a more detailed investigation of the invasion process at the population level, which is relatively inadequate in Korea. In this study, a framework dividing the invasive metapopulation into long- and middle-distance scales by the relative distance of movement to the natural dispersal range of species is proposed to easily analyze the effect of a metapopulation in real cases. Increased understanding of the mechanisms underlying invasions and improved prediction of future invasion risk are expected with the metapopulation concept and this framework.
        6,300원
        2.
        2011.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Understanding the metapopulation structure and movement of a species are required for conserving the species. In this paper, migration patterns and connectivity of patches of a threatened butterfly, Pamassius bremeri Bremer, were postulated using the mark-release-recapture (MRR) technique in a habitat located in the mid-southern region of the Korean peninsula. A total of 194 individuals were captured (137 males and 57 females) and, of them, 93 individuals (73 males and 20 females) were recaptured during the MRR experiment. The migration analysis showed 23-150% immigration and 28-53% emigration. There were high correlations between the migrating individuals and the distance between patches, but there was no correlation between migrating individuals and patch size or between migrating individuals and the number of host plants. Consequently, the migration of butterflies occurred frequently between closer patches, while patch size and quantity of the food plant had minor effects on migration behavior. Additionally, males migrated more frequently than females. Analysis of the migration patterns of P. bremeri showed that the central patch played an important role on linking patch groups and more frequent migrations were monitored between nearby patches than between the remote patches. This study suggested that active migrations take place between the neighboring multiple patches and these are accelerated if there is a stepping-stone patch between them.
        4,000원
        3.
        2010.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The loss of natural habitats and their fragmentation caused by human activities pose a great threat to biodiversity worldwide, reducing animal population to small, fragmented patches of natural habitat. In this paper, a metapopulation dynamics of Sericinus montela koreanus, a species of butterfly, was studied for two years by mark-release-recapture (MRR) techiques in the Musimcheon, Cheongju Korea. 2,749 individuals (males: 2,295, females: 454) were marked and released, with 343 individuals (12.5%) recaptured during the MRR experiment. Capture sex ratio and recapture sex ratios was both consistently male-biased. The Jolly-Seber model was used to estimate daily metapopulation size, survival rates, addition rate, and accidental deaths. We urge conservation biologists to consider the local population dynamics of species for the management of metapopulations in fragmented landscapes. In the case of the S. montela koreanus, continuing site protection is essential.
        4,000원