Synthesis of nano-silica using water glass in a Sol-Gel process is one of several methods to manufacture nano-silica. In nano-silica synthesized from water glass, there are various metal impurities. However, synthesis of nano-silica using water glass in a Sol-Gel process is an interesting method because it is relatively simple and cheap. In this study, nano-silica was synthesized from water glass; we investigated the effect of pH on the synthesis of nano-silica. The morphology of the nanosilica with pH 2 was flat, but the surface of the nano-silica with pH 10 had holes similar to small craters. As a result of ICPOES analysis, the amount of Na in the nano-silica with pH 2 was found to be 170 mg/kg. On the other hand, the amount of Na in the nano-silica with pH 10 was found to be 56,930 mg/kg. After calcination, the crystal structure of the nano-silica with pH 2 was amorphous. The crystal structure of the nano-silica with pH 10 transformed from amorphous to tridymite. This is because elemental Na in the nano-silica had the effect of decreasing the phase transformation temperature
Silica nano-powder (SNP) is an inorganic material able to provide high-performance in various fields because of its multiple functions. Methods used to synthesize high purity SNP, include crushing silica minerals, vapor reaction of silica chloride, and a sol-gel process using TEOS and sodium silicate solution. The sol-gel process is the cheapest method for synthesis of SNP, and was used in this study. First, we investigated the shape and the size of the silica-powder particles in relation to the variation of HCl and sodium silicate concentrations. After drying, the shape of nano-silica powder differed in relation to variations in the HCl concentration. As the pH of the solution increased, so did the density of crosslinking. Initially, there was NaCl in the SNP. To increase its purity, we adopted a washing process that included centrifugation and filtration. After washing, the last of the NaCl was removed using DI water, leaving only amorphous silica powder. The purity of nano-silica powder synthesized using sodium silicate was over 99.6%.
Geopolymer is a term covering a class of synthetic aluminosilicate materials with potential use in a number of areas, but mainly as a replacement for Portland cement. In this study, geopolymers with fly ash and meta kaolin were prepared using KOH as an alkali activator and water glass. The effect of water glass on the microstructures and the compressive strength of the geopolymer was investigated. As the amount of water glass increased, the dissolved inorganic binder particles in the geopolymers increased due to polymerization, resulting in a dense microstructure. The meta kaolin-based geopolymer showed a better extent of polymerization and densification than that of the fly ash-based geopolymer. XRD data also suggested that polymerization in meta kaolin-based geopolymers should be active resulting in the formation of an amorphous phase with an increasing amount of water glass. The compressive strength of the geopolymer was also dependent on the amount of water glass. The compressive strength of the geopolymers from both fly ash and meta kaolin increased with an increasing amount of water glass because water glass improved the extent of polymerization of the inorganic binder and resulted in a dense microstructure. However, the addition of water glass to the geopolymer did not seem to be effective for the improvement of compressive strength because the meta kaolin-based geopolymer mainly consisted of a clay component. For this reason, the fly ash-based geopolymer showed a higher value of compressive strength than the meta-kaolin geopolymer.