In order to elucidate the polycyclic aromatic hydrocarbon concentration and its origin in arctic area, four arctic brown algae (Laminaria saccharina, L. digita, Alaria esculenta, Desmarestia aculeata), one marine invertebrate (Echinoidea) and sediments were collected from Kongsfjorden in Spitsbergen from the late July to early August, 2003. In case of macroalgae, the young blade part above growth point and the old stipes and blades beneath growth point were separated and analyzed for polycyclic aromatic hydrocarbons (PAHs) in an attempt to check the mechanism of uptake in macroalgae to accumulate PAH. There was no difference in PAH concentrations between sampling sites (Stations B and C), species, and blades beneath and above growth point. PAH concentrations in all samples collected in this study were relatively higher than those reported in other areas of arctic. Especially, station C, which is known as an unpolluted area, showed 10 times higher PAH concentration (8,765 ng/g) in sediment than station A (694 ng/g) around harbor. In addition high PAH concentration, station C had very higher proportion of methylated PAH to parent PAH in sediment than station A. Source analysis using PAH isomer pair ratios as indicators showed that Kongsfjorden area seemed to be relatively contaminated with PAH derived from direct petroleum input.
The purpose of this study was to investigate the characteristics of removal efficiency for aromatic hydrocarbons using a high-temperature fiber filter on a laboratory scale. The main elemental compositions of a high-temperature fiber filter are aluminium and silica, which can act as the catalysts. Benzene, toluene and o-xylene among aromatic hydrocarbons were used in this experiment. For 3㎝ thickness of fiber filter, these compounds were removed more than 90% at the face velocities of 3㎝/sec and 5㎝/sec above 450℃. For 4㎝ thickness of it, the removal efficiencies of these compounds were almost 90% from 400℃ at the same face velocities, suggesting that it may be due to increasing the contact time between the fiber filter and aromatic hydrocarbons. The pressure drop ranged from 22 to 48㎜H2O for 3㎝ thickness of fiber filter. However, for 4㎝ thickness of it, it was about two times(41-89㎜H2O) higher than that for 3㎝ fiber thickness.