검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 12

        1.
        2022.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Most of the white fumes from the tenter process of a textile plant in an industrial complex are generated by water vapor and oil mist. While general water vapor disappears when the humidity is lowered, the white fume generated in the tenter process does not disappear and is continuously maintained, resulting in environmental problems and complaints. Efforts to reduce white fume are being conducted, but it is vitally important to develop a performance index that quantitatively calculates and deduces the degree by which white fume has been reduced, so that a tangible and visible result can be obtained in the performance evaluation of prevention facilities. In this study, the removal efficiency or performance of a general wet scrubber and a wet electrostatic precipitator (electrical fume collector, EFC) installed in the actual textile tenter process was analyzed by the light scattering method that can measure the concentration of particles up to a high level. The white fume removal efficiency of the EFC was 92%, much higher than the 17% removal efficiency of the general scrubber. In addition, the EFC was more effective in removing toluene, 1,1'- [oxybis(methylene)]bis- Benzene, and benzothiazole, which are the major substances generated from the textile tenter process, as well as complex odors. From these results, it was found that the light scattering method is one of the useful tools to evaluate the performance of white fume prevention facilities in the industrial field in terms of satisfying the urgent need for measurement and the ability to obtain a clear and precise result on site. This approach is meaningful in that real-time quantification is applicable more intuitively than the gravimetric method in assessing the fume removal performance as it can be observed with the naked eye.
        4,200원
        2.
        2022.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study was conducted to reduce the phenomenon of the biased cultivation of certain mushroom varieties and to develop a competitive variety of Grifola frondosa. We developed the first Korean white commercial mushroom strain, ‘Bakyeon’, by crossing monokaryons derived from brown strains. We have collected and tested the characteristics of mushrooms from domestic and international genetic resources since 2018. We bred the unique domestic variety, ‘Bakyeon’, which has the following characteristics. The optimal temperature for mycelial growth was 25~28oC and the optimal temperature for fruit body growth was 16~18oC. The new variety was similar to the control variety (Daebak) in terms of the pileus, which formed a pine cone shape, and the number of days of cultivation. The yield was 94.1 g/bottle, which was 23% lower than the 108.5 g/bottle yield of the control variety. When incubating the parent and control varieties, the replacement line was clear. Moreover, polymerase chain reaction analysis of mycelial DNA resulted in different band patterns between the parent and control varieties, confirming the hybrid species.
        4,000원
        3.
        2021.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this paper, a heat exchange system using cooling dehumidification and mixing process was proposed as an experimental study for a white smoke reduction heat exchanger system under winter condition. The white smoke reduction heat exchange system is divided into an EA part, SA part, W part and mixing zone. For the operating conditions, three types (Cases 1, 2, and 3) were selected depending on whether EA fan, SA fan, and A-W heat exchanger were operated. In addition, in order to visualize the white smoke exhausted from the mixing zone, it was photographed using CCTV. In order to investigate the performance of the white smoke reduction heat exchange system, the temperature reduction rate and absolute humidity reduction rate of EA and the heat recovery rate of W were calculated. The temperature change of EA and SA according to operating conditions was most effective in Case 3, and the temperature and absolute humidity at the outlet of the mixing zone were greatly reduced. From the results of the white smoke visualization, it was confirmed that the white smoke generation mechanism was different depending on the operating conditions, and the amount of white smoke generation was greatly reduced.
        4,000원
        4.
        2019.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, a white smoke reduction simple prediction model of white smoke reduction heat exchange system was developed by using EES. In order to verify the reliability of the EES model, it was compared with the computational results. The developed EES predictive model was used to calculate the temperature and absolute humidity of the mixed SA and EA according to the change of cooling water capacity, flow rate ratio of SA/EA, and SA inlet temperature. The difference between final temperature and absolute humidity at the outlet of the mixer calculated by computational analysis and EES was within 1.4% and 3.6%. As the cooling water capacity and the inlet flow rate ratio increased, and as the inlet air temperature decreased, the temperature and absolute humidity of the mixer decreased. The most influential factor in the white smoke reduction effect among the design variables of the white smoke reduction heat exchange system was the flow rate ratio of SA/EA.
        4,000원
        5.
        2019.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, the temperature, the absolute humidity, and the turbulent flow characteristics of exhaust air and supply air in the mixer were studied while changing the shape of the mixer of the white smoke reducing heat exchange system. Using Solidworks, the mixer of the white smoke reduction heat exchange system was created by 3-D model. Also, the mixed flow of supply air and exhaust air inside the mixer under the uniform inlet conditions was computed, using the solidworks flow simulation. Two types of improvement models were selected by using a perforated plate and a guide vane as a turbulent mixing flow control method of the mixer. The mean temperature and mean absolute humidity of the mixture were greatly decreased according to the internal shapes of Case 1, 2, and 3. The temperature difference between the inlet and outlet of the mixer Case 3 was 26℃. The exit temperature and absolute humidity reduction rates of Case 3 were 26.2% and 48.1%, respectively, compared with Case 1.
        4,000원
        6.
        2019.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, the characteristics of the heat flow on SA(supply air) side of the white smoke reducing heat exchange system according to the change of SA velocity were analyzed in the winter condition (outside temperature 0℃). Also, the mixing process of SA and the EA(exhaust air) is presented in the psychrometric chart to confirm the possibility of reducing white smoke. Solidworks flow simulation was used to analyze the heat flow on the heat exchange system under uniform conditions. As the inflow velocity of SA increased, the temperature of SA decreased due to the convective heat transfer improvement due to the active flow in SA system. And the outlet temperature and absolute humidity of the mixing zone decreased significantly. At SA velocity 7 m/s, the outlet temperature and absolute humidity decreased to about 58% and 82%, respectively.
        4,000원
        7.
        2018.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, effects of reducing white smoke at a heat exchange system for white smoke reduction were studied in the winter season. For this purpose, the heat transfer processes on the exhaust air were investigated by Solidworks. Five wave heat exchangers of air-to-air and air-to-water type were applied for the exhaust air heat recovery. The analytical condition of the exhaust air was fixed and the computational analysis was performed according to the change of SA(supply air) inlet velocities. In order to evaluate the performance of the heat exchange system for white smoke reduction, W(water)/SA recovered capacities and the temperature/ absolute humidity reduction rate were calculated. As SA inlet velocity increased, the exit temperature and absolute humidity of the mixing zone were reduced by up to about 40℃ and 0.12kg/kg respectively. Also, W/SA recovered capacities increased linearly up to about 35%.
        4,000원
        8.
        2018.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In the present study, the white reduction system was designed and manufactured to evaluate the performance of a heat exchange system using a wave heat exchanger. The reducing effect of white smoke and the amount of heat recovered from cooling water were investigated experimentally using the cooling and dehumidifying method. The white smoke reduction system consists of two parts; the generating part and the reducing part of white smoke. Experimental conditions on EA(exhaust air) and SW(supply water) were fixed. And the outlet temperature and absolute humidity of EA were measured according to inlet velocity of SA(supply air). The outlet temperatures and absolute humidities of EA gradually decreased as inlet velocities of SA increased. From the experimental results, we can see that the absolute humidity reduction rate of EA was max. 84%, and the heat recovery rate of SW was max. 42%.
        4,000원
        9.
        2018.05 구독 인증기관·개인회원 무료
        Power plants consume a major fraction of water to generate electricity, typically in the range between 30 - 50% of all fresh water sources. Most of the water from plants are lost with heat through stack and cooling towers. It has been reported that if 20% of these water can be recycled, power plants can be self-sustainable, allowing them to be located with higher flexibility. Membrane contactor can be an effective solution to harness this source of water, but most of the work have been focused on dense vapor separation membranes with limited success. In this work, we investigated potential application of membrane condenser technology to harness fresh water from power plants.
        10.
        2017.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, the heat transfer characteristics of pilot wave heat exchanger for white smoke reduction system was investigated. The performance of the wave and honeycomb heat exchanger combined with the first stage, second stage and third stage was tested using a calorimeter. Air and water inlet/outlet temperature and flow rate, pressure drop and dehumidification amount were measured to compare the heat transfer performance according to the type and the combination of heat exchanger. The heat transfer rate and dehumidification amount of the wave heat exchanger were higher than that of the honeycomb heat exchanger, and the pressure drop was low. As the stage increased, the heat transfer rate and the increase of the dehumidification amount were more pronounced, and the pressure drop linearly increased. The wave heat exchanger had a lower flow resistance than the honeycomb heat exchanger with the honeycomb structure and had a higher heat transfer effect due to the convection, so the water outlet temperature was higher in the wave heat exchanger.
        4,000원
        11.
        2017.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, the heat flow characteristics of wave heat exchanger was investigated by being applied to the white smoke reduction system. Through numerical analysis, the heat transfer and flow characteristics of the wave heat exchanger with the change of inlet condition of air-side and water-side were analyzed. To investigate the temperature, the absolute humidity, heat transfer rate, pressure drop and turbulence characteristics of the wave heat exchanger, the simulation analysis was conducted by using the commercial computational fluid dynamics software (Solidworks Flow Simulation) under uniform flow conditions. As the inflow rate of air decreased and the inflow temperature of water increased, the heat transfer coefficient of the wave heat exchanger decreased. When the experimental conditions of water-side were the same, the air outlet temperature and absolute humidity of the wave heat exchanger increased with increasing inflow rate of air. To reduce the white smoke, the air outlet temperature and absolute humidity of the wave heat exchanger must be reduced. Therefore, the lower the air velocity and the water inflow temperature into the wave heat exchanger, the more effective it is.
        4,000원