The effect of the stacking order of carbon fiber composites on impact damage was studied. The main form of damage was delamination starting at the interface between individual ply. The force-time response when the impact was applied was monitored and the energy absorbed by the panel was analyzed. The energy absorbed during interlayer separation was found to be affected by the stacking order, and the residual energy absorbed by peel propagation increased linearly as the total peel area increased. It was found that the compressive strength after impact was related to the maximum delamination area.
In recent, fiber-reinforced composites have been widely used in many fields because of their excellent performance. In order to manufacture lightweight, high-performance, and inexpensive composites various laminated structures were designed. Six types of hybrid composites were fabricated with glass/basalt/aramid fibers by VARTM process. The effect of the laminated structure on the mechanical properties of composites was investigated through impact energy, tensile and bending strength. Compared to other conditions more higher impact energy was obtained when the aramid fibers were in the center position and more higher bending strength was obtained when the fibers are laminated in the order of increasing bending performance from top to bottom. The laminate structure did not affect tensile strength which mainly depends on the property of fibers.
본 연구는 탄소나노튜브/보강섬유/폴리머 복합 쉘에 대한 동적응답을 다루었다. 단일벽 탄소나노튜브, 유리섬유 및 에폭시 레진으로 구성된 3단계 복합구조이며, 유효 물성값은 멀티스케일 해석을 통하여 산정하였다. 유한요소 프로그램인 ABAQUS를 적용하여 다양한 탄소나노튜브 함유비율, 적층각도, 곡률 및 중앙 개구부의 다양한 변화에 대한 동적응답 및 상호 작용을 분석하였다. 본 연구는 원통형 복합쉘의 동적 하중에 의한 처짐을 감소시킬 수 있는 변수들의 중요성을 보여주었다.
본 연구에서는 T형 박벽 보의 휨과 좌굴해석을 위해 직교좌표계에 근거한 전단변형을 고려한 적층복합 보 요소를 제안한다. 1차 전단변형 보 이론을 사용하여 유도된 유한요소는 휨 전단변형 및 뒴 비틀림과 재료 비등방성 성질에 따른 연계성을 고려한다. 전체 포텐셜 에너지 원리를 이용해 지배방정식을 유도하였다. 지배방정식의 해를 구하기 위해 변위법에 근거한 2절점, 3절점, 4절점 요소의 세 가지 보 요소를 제안하였다. 압축력을 받는 T형 보의 기하학적 강성은 좌굴하중을 산정하는 데 사용된다. 제안된 보 요소를 검증하기 위해 처짐과 좌굴 해석을 수행하였으며 ABAQUS 상세 유한요소 해석결과와 비교하였다. 최대 처짐에 대한 파이버 방향성과 높이 대 지간 비율과 대칭 적층복합 보의 임계좌굴하중 영향을 조사하였다.
인장 강도는 복합 재료를 설계하기 위한 필수 변수이므로 개방 홀 인장 시험을 통해 복합 재료의 인장 강도를 측정한다. 그러나 인장 시험을 올바르게 모델링하는 것은 섬유와 매트릭스 손상, 층간분리 및 섬유와 매트릭스 사이의 손상 같은 다양한 손상을 수반하기 때문에 매우 어려운 과제다. 따라서 섬유와 매트릭스 사이의 면내 파괴 및 층간분리를 평가하기 위해 본 연구에서는 점진적 손상 모델을 개발하였다. 하신 손상 모델과 응집 영역 접근법을 층과 층간분리를 모델링하는데 사용하였다. 현재 모델의 결과를 이전에 발표된 실험 및 수치 결과와 비교하여 검증하였다. 이를 통해 유한요소해석에서 층간분리를 무시하면 인장 강도가 과대평가 된다는 것을 확인할 수 있었다.
본 연구에서는 중앙 개구부를 갖는 카본나노튜브/유리섬유/폴리머 합성 복합 적층쉘을 다루었다. 수정된 Halpin-Tsai 모델과 마이크로 역학적 접근방법은 단일벽 탄소나노튜브의 합성 비율에 따른 탄성적 물성변화를 추정하기 위하여 적용되었다. 유한요소 해석을 통하여 쉘의 고유진동 및 모드 특성을 분석하였다. 탄소나노튜브의 무게 비율, 보강섬유 각도, 개구부 크기, 고 유진동수 및 고유모드의 상관관계를 규명하였다. 개구부를 갖는 경우와 갖지 않는 경우에 대하여 곡률 변화에 따른 기존 문헌 과의 비교를 통하여 본 연구결과를 검증하였다. 본 연구결과는 고유진동 특성에 영향을 미치는 탄소나노튜브 보강의 중요성을 보여준다.
본 연구에서는 적층된 중앙개구부를 갖는 CNTFPC 복합재 판에 대하여 기하학적 비선형 동적 해석을 수행하였다. Hewitt and Malherbe 멀티스케일 모델을 기반으로 MWCNT의 함유 비율과 중앙개구부의 크기 변화에 따른 영향을 분석하였다. 1차전단변형 판이론에 근거하여, Newmark 방법과 Newton-Raphson 반복기법이 비선형 동적해석을 위하여 적용되었다. 본 연구에서 제안한 방법은 기존 문헌으로부터 도출 결과와 비교 검증하였다. 수치해석 예제는 MWCNT의 적절한 함유량 및 적층된 CNTFPC 구조의 구조성능의 향상시킬 수 있는 상호 관계를 상세 규명하였다.
본 연구에서는 탄소나노튜브/화이버/폴리머 복합소재 구조에 대한 재료 물성 및 강성 추정을 다룬다. 수정된 Halpin-Tsai 모델을 적용한 멀티 스케일 해석은 탄소나노튜브의 함유량 비율, CNT 두께-길이 비율, 화이버 부피 함유량, 그리고 화이버 보강각도 변화에 따라서 수행되었다. 본 연구에서 제시한 멀티-스케일 접근방법은 기존 모델을 적용하여 얻은 결과와 비교하여 검증하였다. 매개변수 해석을 통하여 CNT의 적절한 함유량은 적층된 CNTFPC 구조의 구조성능의 향상시킬 수 있는 중요한 특성을 규명하였다.
앏은 패널 형태의 구조물은 그 형상의 특성상 좌굴이 발생하기 쉽다. 등방성 재료에 대한 좌굴의 해석은 그동안 많은 연구가 이루어졌다. 그러나 복합재의 경우는 좌굴 현상의 거동이 매우 복잡하고 난해하기 때문에 많은 연구가 이루어지지 않았다. 적층복합재의 좌굴거동을 수치적으로 해석하기 위하여 3D 쉘요소를 적용하여 해석을 수행하였다. 본 연구에서는 3가지 종류의 layup에 대하여 비선형 좌굴 현상을 계산하였고 좌굴거동의 하중-변위 특성 관계를 규명하였다. 적층복합재의 경우 좌굴 거동이 극심한 비선형 현상을 나타내며, 또한 수치적으로 수렴하기 어렵다. 3가지 layup 적층복합재의 좌굴 거동을 해석하기 위하여 arc-length 방법을 사용하였다. 비선형 좌굴 거동의 힘-변위 곡선을 계산 하였고 또한 Tsai-Wu 파괴이론에 의하여 좌굴거동이 발생하면서 복합재의 파괴를 계산하였다.
본 논문에서는 복합재 판 스프링의 설계 최적화를 위해 유전자 알고리즘을 사용한 적층 최적화 과정을 제시하였다. 다목적 소형 승합 자동차 판 스프링을 유한요소모델로 구성하여 초기 설계를 검증한 이후, 유전자 알고리즘을 통해 복합재료의 적층수와 적층각도를 최적화하는 과정을 기술하였다. 최적화 과정을 통해 판 스프링의 하중 감소과정, 반복수에 따라 강 구조의 해석 결과와 비교하였다. 더불어 유전자 알고리즘을 통해 최적화된 적층 시퀀스를 구조에 적용하여 구조의 건전성을 검증하기 위해 유한요소 모델로 구성하여 안전여유를 계산하였다. GA를 적용할 때, 복합재료 판 스프링의 적층 두께와 적층각을 획득하였으며, 이는 적절한 강도와 강성으로 최소 무게를 달성하는데 기여한다. 동일한 설계 매개 변수 및 최적화 조건에서 강철된 판 스프링을 복합재 판 스프링으로 교체하면 65.6%의 중량이 감소한다.
Optimization was performed on the static dynamic behavior of a simply supported laminated composite plate. Thickness optimization was performed with respect to Gr/E laminated composites with simultaneous mechanical load, thermal load and hygro-load. Displacement, fundamental frequency and composite damping were imposed as constraints for optimization. The results of the optimization were much better than those of the conventional methods.
We carried out a dynamic instability assessment of carbon nanotube reinforced composite (CNTRC) and carbon nanotubes/fiber/polymer composite (CNTFPC) skew plates based on the high-order shear deformation plate theory (HSDT). The multiscale interactions between carbon nanotube (CNT) ratios and skew angles on the dynamic instability for various length-thickness ratios are studied using a two-dimensional finite element model developed for this study. The results were verified by those reported in the literature show the interactions between the CNT reinforcement and skew angles in the skew laminate. Numerical examples show the importance of CNT reinforcement when assessing the dynamic instability of CNTRC and CNTFPC skew plates.
Using closed-section ribs as longitudinal stiffeners have been proven to be an effective system for axially compressed members, however, studies on the application of these on laminated composite shell are insufficient. Thus, this study aims to evaluate the buckling behavior of the laminated composite shell when closed-section ribs were applied as longitudinal stiffeners. The effect of the rotational stiffness of the closed-section ribs on the buckling modes and strengths will be determined in this paper. The three-dimensional finite element modeling were set up using ABAQUS and a series of eigenvalue analysis were conducted, applying eight layers of the layup [(0°)4]s, [(45°/-45°)2]s and [(0°/90°)2]s on the orthotropic plates. Through the parametric studies, the increasing effect on the elastic buckling strengths due to the rotational stiffness are numerically verified, and the buckling strength of a longitudinally stiffened shell with a laminated composite material were compared with that of the isotropic material.
정삼투법을 이용한 해수담수화는 역삼투 공정에 비해 에너지 절감이 가능하여 해수담수화 차세대 기술로 주목받 고 있다. 막을 기반으로 하는 수처리 분야에서 분리 성능을 향상시키고 새로운 기능을 부여하기 위해, 고분자 매트릭스에 필 러인 나노물질을 삽입하는 박막 나노복합체 분리막(thin film nanocomposite, TFN) 개발에 대한 연구가 요구되고 있다. 본 연구에서는 딥 코팅(dip coating) 방법을 기반으로 한 다층박막적층법(Layer-by-layer, LBL)을 이용하여 산화그래핀(graphene oxide, GO)의 나노 적층구조를 제어하여, 정삼투 공정에서의 높은 안정성 및 높은 수투과도 및 염 제거, 낮은 염 역확산을 갖는 그래핀 나노복합체 분리막을 개발하고자 하였다. 정삼투 공정의 성능 향상을 위한 산화그래핀의 환원 반응시간과 LBL 딥 코팅 적층 수의 최적화를 통해, 수투과도 2.51 LMH/bar, 물분자 선택성 8.3 L/g, 염 제거율 99.5%를 갖는 나노복합체 분리막 을 개발하였다. 이는 상용화된 CTA FO 분리막보다 수투과도는 10배, 물분자 선택성은 4배 높게 향상되었으며, 염 제거율은 비슷한 수준으로 나타났다.