The purpose of this study is to analyze the overall condition of the foundation for the three storied stone pagoda of Bulguksa temple in GyeongJu. As a research method, exploration of the electrical resistivity, refraction seismic, surface wave exploration, GPR exploration, Reputation loading test. The results of the investigation, the range of the foundation was formed in foundation stone outskirts of 1.5 ∼ 2.0m. It was confirmed to be about 2.0m depth. The depth of the foundation becomes shallower from the base portion to the outside. And the bearing capacity of foundation was sufficient conditions to weight. It can sufficiently support the weight of pagoda. And, the result of this investigation becomes basis data for repair work.
The purpose of this study is to analyze the cause of damage to the three storied stone pagoda of Bulguksa temple in GyeongJu. This report is attempted to making reinforcement and conservation plan through investigating and analyzing the cause of damage to that. The damage is caused by occurring of stress, degrading of stone strength, changing of underground soil structure, natural disasters and so on. Compressive stress, shear stress, bending stress and lateral pressure affected to the pagoda since built up. Ultrasonic examination data tells the strength of the stone. According to this result, strength of the stereobate stone materials is enough to support the weight of the upper ones. But we could found many other factors of the damage could consider, for example the problems occurred on building the pagoda construction and the weakness of the stone material(soft rock). And many environmental factors being changed in soil structure(subsidence of soil and degradation of bearing power of soil and freezing and melting of soil) can be seen as the cause of the damage. Natural disasters like earthquake, lightning and heavy rain were also thought to give direct impact to the damage. At last Concentration of compressive stress caused the crack and exfoliation on the stone materials and shear stress, bending stress and lateral pressure were main causes of the stereobate stone materials shearing.