This study is to conduct the optimal design of the fluid mixing blades in the test fluid tank for sewage treatment process. The design was made with various shapes and angles of mixing blades. Fluid mixing blades in the tank are numerically analyzed with FLUENT V.13.0. Blade1 and Blade4 had the biggest fluid pressure difference of 8.1% around the blades. And, Blade1 and Blade3 had the least fluid pressure difference of 2.55%. The biggest turbulence kinetic energy of 12.5% existed around Blade1 and Blade4. Blade1 and Blade3 had the least turbulent kinetic energy difference of 4.8%. Blade4 is the optimal design shape due to the highest turbulent kinetic energy around the blades in comparison to the other cases.
The object of research is based on 1.5 MW wind turbine blade. This paper has carried out the aerodynamic shape optimization design of wind turbine blade. Based on the aerodynamic basic theory of wind turbine blade design and combined with particle swarm optimization algorithm(PSO), the design optimization model of the aerodynamic shape of blade is established. Through this study, the optimization results of the angle inducing ′ and tangential inducing were obtained. The calculation programs are written and calculated chord length and torsion angle of the blade used by ′ and . The calculation result for the optimized wind turbine was 1.38 MW when the wind speed was 16 m/s. The 8 % error could be considered as an engineering acceptable error and the calculated values can be proved the correctness of the design value.
The object of research in Based on 1.5MW wind turbine blade. This paper has carried out the aerodynamic shape optimization design of wind turbine blade. Based on the aerodynamic basic theory of wind turbine blade design and combined with particle swarm optimization algorithm, the design optimization model of the aerodynamic shape of blade is established. The calculation programs are written by use of MATLAB and calculate chord length and torsion angle of the blade. Then the shape of wind turbine blade is obtained. As research we can know that the chord length is decreased after optimization design of wind turbine blade, The optimized blade not only meets the actual manufacturing requirement, but also has the largest wind energy utilization coefficient.
해양에너지는 아직 개발되지 않은 가장 유망한 재생 및 청정에너지 자원 중 하나이다. 특히 우리나라는 세계적으로 보기 드문 조류발전의 적지이며, 이를 이용하기 위해서는 각 해역에 적합한 조류에너지 변환 장치의 개발이 매우 필요하다. 따라서 본 연구에서는 조류발전 방식 중 수평축 로터 블레이드의 최적형상 설계 및 성능평가를 목적으로 날개 끝 손실 모델을 포함하는 날개요소 운동량이론을 적용한 조류터빈 설계기법을 제안하고, 100 kW급 로터 블레이드를 설계하였다. 또한 블레이드 국부위치에서 주속비에 따른 Prandtl의 날개 끝 손실 변화를 비교하였으며, 정격 날개 끝 속도비에서 NACA63812를 사용하여 설계된 로터 블레이드의 동력계수는 0.49로 우수한 성능을 나타내었다.