As environmental concerns escalate, the increase in recycling of aluminum scrap is notable within the aluminum alloy production sector. Precise control of essential components such as Al, Cu, and Si is crucial in aluminum alloy production. However, recycled metal products comprise various metal components, leading to inherent uncertainty in component concentrations. Thus, meticulous determination of input quantities of recycled metal products is necessary to adjust the composition ratio of components. This study proposes a stable input determination heuristic algorithm considering the uncertainty arising from utilizing recycled metal products. The objective is to minimize total costs while satisfying the desired component ratio in aluminum manufacturing processes. The proposed algorithm is designed to handle increased complexity due to introduced uncertainty. Validation of the proposed heuristic algorithm's effectiveness is conducted by comparing its performance with an algorithm mimicking the input determination method used in the field. The proposed heuristic algorithm demonstrates superior results compared to the field-mimicking algorithm and is anticipated to serve as a useful tool for decision-making in realistic scenarios.
This study aimed to evaluate the effectiveness of closed season policy using an integer linear programming, targeting the large purse seine fishery in Korea. In the analysis, based on Cheng and Townsend(1993), fishing effort (fishing days by month) was assumed to be distributed for profit maximization of vessels and catch of immature fish was estimated. The analytical results showed that the effects of closed season policy would vary in accordance with the monthly closures in terms of fishing profits and catch of immature fish. A closed season policy by month had different effects on fishing profits and catch of immature fish by species. It implies the importance of considering seasonal changes of fish species when limiting fishing efforts with the closed season policy.
In this paper, we present a multi-period 0-1 knapsack problem which has the cardinality constraints. Theoretically, the presented problem can be regarded as an extension of the multi-period 0-1 knapsack problem. In the multi-period 0-1 knapsack problem, there are n jobs to be performed during m periods. Each job has the execution time and its completion gives profit. All the n jobs are partitioned into m periods, and the jobs belong to i-th period may be performed not later than in the i-th period, i = 1, ⋯, m. The total production time for periods from 1 to i is given by bi for each i = 1, ⋯, m, and the objective is to maximize the total profit. In the extended problem, we can select a specified number of jobs from each of periods associated with the corresponding cardinality constraints. As the extended problem is NP-hard, the branch and bound method is preferable to solve it, and therefore it is important to have efficient procedures for solving its linear programming relaxed problem. So we intensively explore the LP relaxed problem and suggest a polynomial time algorithm. We first decompose the LP relaxed problem into m subproblems associated with each cardinality constraints. Then we identify some new properties based on the parametric analysis. Finally by exploiting the special structure of the LP relaxed problem, we develop an efficient algorithm for the LP relaxed problem. The developed algorithm has a worst case computational complexity of order max[O(n2log n), O(mn2)], where m is the number of periods and n is the total number of jobs. We illustrate a numerical example.
This study aimed to empirically investigate the applicability of ecosystem-based TAC (Total Allowable Catch) fisheries management targeting the large purse seine fishery where multi-species are regulated by TAC. Using a linear programming, the optimal fishing effort and the catch amount by species which maximize fishing profits were analyzed under the constraint condition of catch limits by species. Analytical results showed that an application of TAC on only chub mackerel would have negative impacts on fish stocks such as hairtail and jack mackerel by increasing the level of fishing effort to achieve its allocated catch limit. However, under the constraint condition of catch limits of all species, it was shown that optimal catches of all species were achieved within their catch limits. It implies the importance of ecosystem-based management considering biological and technical interactions of species those were excluded in the traditional single species fisheries management.
A solution method for fuzzy linear programs is proposed. A fuzzy linear program is converted to a crisp linear program with average indices being applied to the objective function and constraints. A comparative analysis between the proposed average inde
This study is concerned with developing a heuristic algorithm for solving a class of ninlinear integer programs(NLIP). Exact algrithm for solving a NLIP either may not exist, or may take an unrealistically large amount of computing time. This study develops a new heuristic, the Excursion Algorithm(EA), for solving a class of NLIP's. It turns out that excursions over a bounded feasible and/or infeasible region is effective in alleviation the risks of being trapped at a lical optimum. The developed EA is applied to the redundancy optimization problems for improving the system safety, and is compared with other existing heuristic methods. We also include simulated annealing(SA) method in the comparision experiment due to ist populatrity for solving complex combinatorial problems. Computational results indicate that the proposed EA performs consistently better than the other in terms of solution quality, with moderate increase in computing time. Therefore, the proposed EA is believed to be an attractive alternative to other heuristic methods.
Elevated linear parks have the potential to support the ecological stability, city amenity, cultural opportunity, and health benefits of urban dwellers; these are increasingly becoming an integral part of the urban infrastructure. Due to structural limitations in space, linear parks need to be planned to increase the value of green space. This study was aimed at advancing urban planning techniques for increasing the value of elevated linear parks, by comparing the Seoullo7017 with the Promenade plantée and the Highline. Planning characteristics of these green spaces were analyzed from the perspectives of physical planning factors, amenity values for users, and management systems. Field surveys and virtual tools were used to investigate the current characteristics of these parks, in addition to the literature survey. From the analysis of planning factors, amenity values, and management in the three linear parks, following important recommendations were made in order to promote the values of these parks: (a) diversify planting design for increasing the diversity of green space in a narrow area; (b) bring in various forms of amenities to promote the quality of users' experience; and (c) establish community-based management systems for enhancing regional competitiveness and profit sharing in urban regeneration projects.
Although some indicators for evaluating rural settlement conditions have been offered, these indicators could not reflect unique characteristics that rural has its own peculiarities. The rural area is identified with central districts functioned as service provision and hinterlands used its service. The aim of this study is to find a central district of rural villages and define range of its hinterlands using various physical characteristics of rural areas. Targeting areas are Yongsan and Hwanggan in Yeongdong-gun . The physical characteristics are represented by building density, number of shops among secondary and tertiary industries, official land price, and density of bus line. The rural central district is estimated by linear programming using defined the physical characteristics. Also its hinterlands used Huff model and social accessibility. The results of this study are as follows; (1) The physical characteristics in Hwanggan myeon is higher than Yongsan myeon because Hwanggan area has a large floating population for using Hwanggan station and ticket office; (2) The central district in Hwanggan has wider regional range than Yongsan. When central district estimate in rural areas, we suggest a grid diameter of Hexagon for controlling errors; (3) Considering accessibility, the life zone of 4 districts defined legally in Hwanggan use Yongsan and 2 legal districts in Hwanggan are possible to take advantage of Yongsan’s life zone; (4) The results of survey targeting boundary villages between Yongsan and Hwanggan, individual drivers use central districts both Yongsan and Hwanggan, however users by public transportation (especially bus) go more to Hwanggan because bus lines to Hwanggan have many routes than to Yongsan. Evaluating the rural settlement conditions by national unit through grasping central districts and its hinterlands, these results can use as base line data and the evidence for regional development projects.
본 논문은 선형계획모형을 이용하여 H 아리수 정수 센터의 최적 취수량 결정 방법을 연구 하였다. 현재 H 아리수 센터에서는 관리자의 경험과 숙련도에 의지하여 취수량을 결정하고 있다. 그런데 매시 변하는 수요를 만족 시키면서 시간대 별로 요금이 서로 다른 전력의 사용을 최소화 하는 취수량 결정은 근무자들의 경험과 숙련도를 넘어서는 간단한 문제가 아니다. 따라서 수리적 기법 중 하나인 선형계획모형을 이용해 취수량을 결정하고, 비용 절감을 시도하였다. 본 연구에서 제안한 선형계획 모형은 수요예측치를 기본 입력자료로 사용하고 있는데 예측오차가 발생할 경우 정수지 높이 제한을 위반하는 경우가 발생한다. 이를 해결하기 위해서는 정확한 수요예측이 선행되어야 한다. 그러나 아무리 좋은 예측 기법을 사용하더라도 실수요와 오차는 있게 마련이고 이는 여전히 높이 제한의 제약을 만족 시키지 못하는 결과를 불러일으킨다. 따라서 예측오차를 수용 할 수 있는 안전 마진 상수를 이용한 대안을 제안하였다. 본 연구에서 제안한 선형 계획 모형을 통한 취수량 결정은 수위 모니터링을 위해 항시 작업자가 근무 할 필요가 없기 때문에 인건비 면에서도 많은 절약이 예측되어 총 비용 감축은 훨씬 더 많으리라 기대된다.
강수량을 이용해 수문분석 할 경우 강수 자료의 양과 연속성은 분석의 신뢰성에 큰 영향을 미칠 수 있다. 따라서 강수 자료가 짧거나 기계 고장 등으로 인하여 결측된 경우에 강수 자료기간을 늘리거나 결측 자료를 보완하는 것은 매우 기본적인 과정이다. 이에 본 연구에서는 결측 강수량을 보완하기 위해서 적용되는 자료구동(Data-driven) 방법인 선형계획법을 많이 사용되는 7개 기법을 비교 분석하고 우수성을 검정한다. 이를 위해서 적용한 자료는 한강 유역