최근 Carbon Fiber Sheets(CFS)를 이용하여 철근콘크리트(RC) 기둥을 보강하는 방법이 널리 사용 되고 있다. 기존 연구들은 대부분 원형 단면을 가진 RC 기둥에 초점을 맞추고 있는 반면, 사각 단면 을 가진 RC 기둥에 대한 연구는 비교적 제한적이다. 특히 실험 결과를 예측하기 위한 해석적 연구는 실험적 연구에 비해 제한적으로 수행되었다. 따라서 본 연구에서는 CFS로 횡구속된 RC 기둥의 횡구 속 효과를 예측하기 위한 해석적 연구결과를 제시한다. CFS로 횡구속된 RC 기둥의 횡구속 효과를 예 측하기 위해 상용 구조해석 프로그램인 ABAQUS를 이용하여 유한요소해석이 수행되었다. 유한요소해 석 시 콘크리트는 Solid 요소로 모델링 되었으며, 철근과 CFS는 각각 Beam 요소 및 Shell 요소로 모 델링 되었다. 또한 콘크리트와 철근은 일체 거동하는 것으로 가정되었으며, CFS와 콘크리트는 완전부 착하는 것으로 가정되었다. 실험결과와 해석결과의 파괴양상을 분석하였을 때, 본 연구에서 제안된 유 한요소해석 모델은 실험체의 부착파괴를 적절히 모사할 수 있는 것으로 나타났다. 또한 해석을 통해 예측된 극한응력에 대한 실험결과의 오차는 평균 2.97%로 나타났으며, 극한응력 시의 축방향 변형률 및 횡방향 변형률은 실험결과와 비교하여 각각 평균 17.32% 및 9.52%의 오차를 나타내었다. 따라서 제안된 해석모델은 CFS로 횡구속된 RC 기둥의 횡구속 효과를 비교적 잘 예측할 수 있는 것으로 판 단된다.
이 연구는 다방향성 바잘트 섬유 시트로 보강한 철근콘크리트 보의 보강방법에 따른 전단거동을 실험을 통해 확인하 였다. 실험변수는 보강방법(무보강, 45도 90도 U형)과 보강겹수(0, 1 2겹)를 변수로 두었으며 전단강도실험결과 바잘트섬유시트 를 90도로 1겹 보강하였을 때 최대 11% 이상의 보강성능을 확인하였다. 또한, 유효변형률을 검토한 결과 섬유양이 증가함에 따 라 유효변형률이 감소함을 확인하였다.
이 연구는 바잘트 섬유시트로 전단보강한 철근콘크리트 보의 전단경간비에 따른 구조물의 구조적 거동을 실험을 통해 확인하였다. 철근콘크리트 보의 전단보강은 무보강, 45도, 90도, U형보강을 변수로 두었으며 전단경간비에 따른 실험결과 U형으로 보강하였을 때 철근콘크리트 보의 전단보강효과가 높음을 확인하였다.
이 연구는 탄소섬유시트의 보강겹수와 보강위치에 따른 I형 PFRP 휨부재의 휨보강 효과에 대해 조사하였다. 또한, 탄소섬유시트로 보강한 PFRP 휨부재의 실험적, 이론적으로 확인하기 위해 유한요소해석을 실시하였으며, 휨실험 결과와 이론적 해석결과를 비교분석하였다. 휨실험 결과와 유한요소해석 결과는 이론적인 결과와 비교한 결과 일치하는 경향을 보였고, 휨보강 효과가 큰 탄소섬유시트 2겹을 보강한 시편에서 결과에서 오차가 가장 크게 발생하였다.
이 연구는 탄소섬유시트의 보강겹수에 따른 I형 PFRP 휨부재의 휨보강 효과를 조사하기 위해 길이 600mm의 PFRP 휨부재와 상하부 플랜지에 1mm 두께의 탄소섬유시트로 보강하여 휨실험을 수행하였다. 또한, 탄소섬유시트의 보강겹수와 보강 위치에 따른 I형 PFRP 휨부재의 휨보강 효과와 단면 감소량에 대해 조사하였다. 그 결과 2겹으로 보강하였을 때 휨강도와 휨강성이 증가함을 확인하였다.
현무암 섬유를 함유한 BFRP 시트와 복합섬유 패널로 보강한 정사각형 단면 철근콘크리트 기둥에 대한 반복하중 실험을 수행하여 지진 거동을 검토하였다. 30%가량의 상당한 수준의 축하중비 조건 하에서 전단 손상이 발생하였음에도 불구하고, 보강 실험체에서 변위연성도 및 에너지 소산능력의 증가를 확인하였다. 실험체의 파괴 모드는 휨-전단 고연성 파괴로 분류 되며, 철근콘크리트 구조물에서 자주 관찰되는 파괴 모드이다. 하지만 이러한 파괴에 이르는 정사각형 단면 철근콘크리트 기둥에 BFRP을 포함한 복합재료 보강이 미치는 영향에 대한 연구가 현재까지 광범위하게 이루어지지는 않았다. 복합재료로 보강한 철근콘크리트 기둥의 휨-전단 거동을 보다 깊이 이해하는데 본 연구의 결과가 기여할 것으로 기대한다.
FRP 보강이 RC 기둥의 내진성능에 미치는 효과를 평가하고자 다양한 실험 연구가 수행되어 왔다. 그 중 많은 연구가 휨지배를 받는 원형 단면 RC 기둥의 거동에 초점을 맞추었다. 단면 형태가 FRP 보강에 의한 구속효과에 영향을 주기 때문에, 단면 형태에 따라 보강효과 및 최종손상 양상이 다를 수 있다. 또한, 기존 RC 기둥 중 일부는 현재의 구조기준을 만족하지 못하는 설계로 인하여 취성적인 파괴 모드인 전단 파괴가 발생할 것으로 여겨진다. 이 두 가지 조건을 고려하여, 현무암 섬유를 함유한 FRP 시트와 복합섬유 패널로 보강한 정사각형 단면을 가진 짧은 RC 기둥의 전단 거동을 살펴보기 위하여 반복하중 실험을 수행하였다. 실험 결과에서 전체적인 전단 거동의 개선을 확인하였으며, 이러한 경향은 모서리 부분에서 심각한 손상이 발생할 때까지 유효하였다.
자연재해 발생을 예방하기 위한 방재센서 기술이 중요하며 광섬유를 이용한 센서에 대한 관심이 높아지고 있다. 본 논문은 광섬유 센서 내장 탄소섬유시트로 보강된 RC보의 계측된 데이터로 결함 탐지 연구를 수행하였다. 미분의 국부적 변동 특성을 이용한 Method Ⅰ과 컨벌루션 방법을 이용한 Method Ⅱ를 비교, 분석하였다. 다른 차원의 데이터를 비교하기 위해서 무차원화 시켰으며, 분석 결과 Mehtod Ⅱ가 결함의 위치를 예리하게 잘 탐지하는 것으로 나타났다. Method Ⅱ인 컨벌루션에 사용 되는 필터 벡터를 잘 응용하면 더 좋은 효과를 기대할 수 있을 것으로 판단된다.
FRP 시트(Sheet)를 활용한 보강 공법은 제작 과정에서의 간편함과 시공의 용이성으로 현장에서 다수 적용되고 있으며, 기존 연구자들은 FRP 시트로 보강한 철근콘크리트의 휨강도를 예측하기 위한 연구를 진행하였다. 그러나 이는 주로 탄소 섬유와 유리 섬유에 한정되어 있었다. 이 연구에서는 바잘트 섬유시트의 역학적 성질을 파악하기 위하여 물성 시험을 수행하였으며, 바잘트 섬유시트로 보강한 철근콘크리트 보의 휨실험을 수행하였다. 또한 그 결과 값을 비교 분석하여 기존 연구를 바탕 으로 바잘트 섬유 시트로 보강한 철근콘크리트 보의 휨모멘트 예측식을 제안하였다. 강도설계법, ACI440.2R (2017) 그리고 Park et al. (2005)의 예측값을 검토한 결과, 강도설계법은 실험값과 예측값의 비가 0.88로 나타났으며, ACI440.2R (2017) 설계식은 0.92, Park et al. (2005)은 0.97로 나타나 기존의 해석 방법은 휨모멘트를 과대평가하는 것으로 나타났다. 본 연구의 제안식은 실험값과 예측값의 비가 1.00으로 나타나 휨모멘트를 안전측으로 예측하는 것으로 나타났다.
FRP 시트(Sheet)를 활용한 보강 공법은 제작 과정에서의 간편함과 시공의 용이성으로 현장에서 다수 적용되고 있으며, 기존 연구자들은 FRP 시트로 보강한 철근콘크리트의 휨강도를 예측하기 위한 연구를 진행하였다. 그러나 이는 주로 탄소 섬유와 유리 섬유에 한정되어 있었다. 이 연구에서는 바잘트 섬유시트의 역학적 성질을 파악하기 위하여 물성 시험을 수행하였으며, 바잘트 섬유시트로 보강한 철근콘크리트 보의 휨실험을 수행하였다. 휨실험 결과 보강량이 증가할수록 실험체의 내력이 증가하였다. 또한 휨파괴 및 시트 파단, 시트 부착 탈락, 시트 박리가 발생하였다.
Existing reinforced concrete frame buildings designed for only gravity loads have been seismically vulnerable due to their inadequate column detailing. The seismic vulnerabilities can be mitigated by the application of a column retrofit technique, which combines high-strength near surface mounted bars with a fiber reinforced polymer wrapping system. This study presents the full-scale shaker testing of a non-ductile frame structure retrofitted using the combined retrofit system. The full-scale dynamic testing was performed to measure realistic dynamic responses and to investigate the effectiveness of the retrofit system through the comparison of the measured responses between as-built and retrofitted test frames. Experimental results demonstrated that the retrofit system reduced the dynamic responses without any significant damage on the columns because it improved flexural, shear and lap-splice resisting capacities. In addition, the retrofit system contributed to changing a damage mechanism from a soft-story mechanism (column-sidesway mechanism) to a mixed-damage mechanism, which was commonly found in reinforced concrete buildings with strong-column weak-beam system.
탄소섬유는 인장강도와 내구성이 우수하므로 구조물의 표면에 탄소섬유시트를 부착하는 보강공법은 콘크리트 구조물의 보수 및 보강에 사용되는 대표적인 방법이다. 그러나 탄소섬유시트 부착공법은 시공 후 보강성능의 확인이 어려운 단점이 있다. 탄소섬유시트에 광섬유를 매입하여 계측이 가능한 보강재로 사용하는 경우 미부착이나 탈락된 부위를 찾아내어 구조물의 보강수준을 평가할 수 있을 것으로 기대된다. 본 연구는 제작된 센싱보강재의 기본적인 가능성을 확인하기 위해 센싱보강재의 크기와 매립된 광섬유의 간격을 변인으로 두고 센싱보강재 실험체를 제작하였다. BOTDR (Brillouin Optical Time Domain Reflectometer)을 사용하여 시편의 변형에 따른 광섬유의 산란광으로부터 변형률을 계측하고 응답을 분석하였다. 분석 결과로부터 보강수준 정량화를 위한 센싱보강재의 적용성 및 BOTDR의 최소요구성능을 확인하였다.
The purpose of this study was to develop a carbon fiber sheet with embedded fiber optic sensor for maintenance and performance improvement of aged concrete bridges. The carbon fiber sheet reinforcement method can separate the concrete and the carbon fiber sheet, so it is necessary to investigate the bond performance level. However, separation of concrete and carbon fiber sheet and investigation of concrete scaling phenomenon are carried out by human, so it is difficult to secure objectivity and accurate investigation. Therefore, in this study, a method to confirm the bond level of carbon fiber sheet by reinforcing with a carbon fiber sheet with a fiber optic sensor was examined. In this study, we investigated the strain of fiber optic sensor embedded in carbon fiber sheet to identify the separate point of carbon fiber sheet. The strain measured by fiber optic sensor was measured by numerical analysis. The strain rate of the carbon fiber sheet was compared with that of the carbon fiber sheet. As a result, it was confirmed that the strain was changed at the point where the carbon fiber sheet was separated, and the strain occurred in the carbon fiber sheet was examined to predict the separate point.
The purpose of this study is to develop a carbon fiber sheet with embedded fiber optic sensor for maintenance and performance improvement of aged concrete bridges. The carbon fiber sheet bonded method has many advantages in terms of member repair and reinforcement, but it is disadvantageous in that it is necessary to directly identify the separate point generated during the bonded of the carbon fiber sheets by an artificial method. In this study, we examined the method of confirming the separate point of the carbon fiber sheets by examining the strain of the fiber optic sensor embedded in the carbon fiber sheets. The strain rate measured by the fiber optic sensor was replaced by the strain of the carbon fiber sheets derived from the FEM analysis.