Fast service access involves keeping track of the location of mobile users, while they are moving around the mobile network for a satisfactory level of QoS (Quality of Service) in a cost-effective manner. The location databases are used to keep track of Mobile Terminals (MT) so that incoming calls can be directed to requested mobile terminals at all times. MT reporting cell system used in location management is to designate each cell in the network as a reporting cell or a non-reporting cell. Determination of an optimal number of reporting cells (or reporting cell configuration) for a given network is reporting cell planning (RCP) problem. This is a difficult combinatorial optimization problem which has an exponential complexity. We can see that a cell in a network is either a reporting cell or a non-reporting cell. Hence, for a given network with N cells, the number of possible solutions is . We propose a biogeography based optimization (BBO) for design of mobile station location management system in wireless communication network. The number and locations of reporting cells should be determined to balance the registration for location update and paging operations for search the mobile stations to minimize the cost of system. Experimental results show that our proposed BBO is a fairly effective and competitive approach with respect to solution quality for optimally designing location management system because BBO is suitable for combinatorial optimization and multi-functional problems.
In mobile communication systems, location management deals with the location determination of users in a network. One of the strategies used in location management is to partition the network into location areas. Each location area consists of a group of cells. The goal of location management is to partition the network into a number of location areas such that the total paging cost and handoff (or update) cost is a minimum. Finding the optimal number of location areas and the corresponding configuration of the partitioned network is a difficult combinatorial optimization problem. This cell grouping problem is to find a compromise between the location update and paging operations such that the cost of mobile terminal location tracking is a minimum in location area wireless network. In fact, this is shown to be an NP-complete problem in an earlier study. In this paper, artificial bee colony (ABC) is developed and proposed to obtain the best/optimal group of cells for location area planning for location management system. The performance of the artificial bee colony (ABC) is better than or similar to those of other population-based algorithms with the advantage of employing fewer control parameters. The important control parameter of ABC is only ‘Limit’ which is the number of trials after which a food source is assumed to be abandoned. Simulation results for 16, 36, and 64 cell grouping problems in wireless network show that the performance of our ABC is better than those alternatives such as ant colony optimization (ACO) and particle swarm optimization (PSO).
Field sequential 액정 디스플레이(FSLCD)는 컬러필터를 사용하지 않아 높은 투과율 특성을 보이고 광
원으로 LED를 사용함으로써 색재현성이 매우 우수하다. 하지만 FSLCD(60Hz 구동)를 실현하기 위해서는 액정의 응답속도가 5ms이하로 고속응답 특성을 보여야 한다. 따라서 본 논문에서는 고속응답 ECB(electrically controlled birefringence) 셀의 최적 구조를 연구하여 5ms 이하의 응답시간을 얻었다. 그리고 ECB 모드에서 높은 구동전압과 시야각을 개선하기 위해 필름 보상을 연구하였다. 판상형 액정필름(discotic film)과 TAC(triacetyl cellulose) 필름의 위상차 값을 최적화함으로써 구동전압을 5V로 낮추고 상하좌우에서 160° 이상(CR>10:1)의 시야각을 실현하였다.
본 연구는 기계고장 시 대체경로를 고려한 새로운 유사계수와 주어진 기간 내 수요변화를 고려하여 제조 셀을 구성하는 방법론을 개발하는 것이다. 본 연구의 방법론은 2단계로 나누어진다. 1단계에서는 기계고장 시 이용 가능한 대체경로를 고려하여 새로운 유사계수를 제시하고 유전자 알고리즘을 활용하여 부품 군을 식별하는 것이다. 셀 응용의 성패를 좌우하는 주요한 요소들 중 하나는 수요변화에 대한 유연성으로서 수요변화, 이용 가능한 기계의 능력 및 납기일에 따라