검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 9

        1.
        2005.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        한반도 남서해안에 위치한 흑산도 고층관측이 2003년 6월 1일부터 실시되고 있다. 이러한 흑산도 관측자료에 의한 수치예보개선효과를 보기 위하여 광주의 관측자료와 비교 분석하였다. 분석에는 MM5를 기본으로 제작한 호남지방 고밀도 예측시스템을 이용하였다. 먼저 지표면 마찰과 현열플러스의 차이에 의하여 광주와 흑산도의 바람장과 온도장은 다르게 나타났으며, 광주와 흑산도의 자료를 모두 동화시킨 수치예측 바람장과 기상장이 관측과 제일 잘 일치하였다. 강수면에서 비록 강수량은 과소평가를 하고 있으나, 강수시간과 강수구역은 흑산도자료를 포함하여 자료동화를 시킨 경우 관측과 유사하게 나타났다.
        4,300원
        2.
        2001.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        제주 지방 기상청을 대상으로 하는 지역 규모 단시간 수치예보 시스템을 구축하였다. 기상청 본청에서 하루 2회 제공되는 30 km해상도의 수치예보 자료로는 지방 기상청의 예보관들이 우리 나라와 같이 복잡한 지형에서 발생하는 그 지역의 국지 악기상을 파악하기에는 무리가 있다. 지역 규모의 고해상도 수치예보를 위해 LAPS와 MM5를 자료분석과 예보 모델로 이용하였다. LAPS는 양질의 수치예보 초기자료를 생산해 내기 위해 종관 관측 자료뿐만 아니라 위성 및 레이더 등의 비 종관 관측자료도 자료동화에 이용한다. MM5 모델은 16노드의 펜티엄 PC로 구성된 클러스터에서 수행되었으며 이 시스템은 분산병렬 클러스터 컴퓨터로 가격대비 성능이 매우 우수한 미니 슈퍼컴퓨터이다. 자료동화 모델, 수치예보 모델 그리고 PC-클러스터를 종합한 지역 규모 단시간 수치예보 시스템을 한라 단시간 예측 시스템이라 명명하였으며 이 시스템은 현재 제주 지방 기상청에서 독자적으로 운영되고 있다. 기상청 본청에서 제공되는 수치예보 정보로는 탐지할 수 없었던 1999년 7월 9일 제주 지역의 집중호우 사례에 대하여 본 시스템을 검증한 결과 모델이 예측한 강수량이 실제 강수량을 잘 재현하였다. 한라 단시간 예측 시스템은 2000년 4월부터 하루 4회 제주 지방기상청에서 독자적으로 운영되고 있다.
        4,000원
        3.
        2018.07 KCI 등재 서비스 종료(열람 제한)
        최근 이상기후로 인한 집중호우 발생빈도와 이로 인한 국지적인 홍수 피해가 증가하고 있다. 이러한 점에서 홍수피해 예방측면에서 수치예보 정보 활용이 요구되고 있다. 그러나 수치예보모델은 초기 조건 및 지형적 요인으로 인해 시공간적 편의가 존재하며 실시간 예측정보로 활용하기 전에 모 형결과에 대한 편의보정이 요구된다. 본 연구에서는 관측지점 기준으로 편의 보정계수를 산정하는 과정에서 모든 관측소간의 상관성을 거리의 함 수로 고려하여 미계측지점의 편의 보정계수를 공간적으로 확장할 수 있는 Bayesian Kriging 기반 MFBC 기법을 개발하였다. 본 연구에서 개발한 방법은 미계측 유역에 대해서도 보정계수를 효과적으로 추정하는 것이 확인되었으며, 비교적 고해상도로 72시간(3일) 정도까지 예측강우 정보를 활용하는 것이 가능할 것으로 판단된다.
        4.
        2017.08 KCI 등재 서비스 종료(열람 제한)
        본 연구에서는 기상청에서 제공하는 국지예보모델(LDAPS)과 일본 기상청의 중규모모델(Meso-Scale Model, MSM)을 이용하여 태풍 및 정체 전선 등 3개의 강우사상과 남강댐 유역 내 산청 유역에 대해 강우 및 홍수 예측 정확도를 평가하고 비교․ 검토하였다. 강우예측 정확도 평가 결과, LDAPS와 MSM 모두 태풍 사상과 같은 광역적인 예측에 대해서는 예측 정확도가 높은 것으로 나타났으나, 정체전선과 같이 국지적으로 발생하는 강우사상의 경우 예측 오차가 많이 발생하는 것으로 나타났다. 홍수예측 정확도 평가 결과, 선행시간이 증가함에 따라 점점 예측 정확도가 향상되는 것을 확인할 수 있었으며, LDAPS와 MSM 모두 기상 및 수자원간의 연계를 통하여 강우 및 홍수 예측 분야에서의 활용 가능성을 확인할 수 있었다.
        5.
        2012.07 KCI 등재 서비스 종료(열람 제한)
        본 연구에서는 지상의 관측 자료와 광역의 정보를 제공하는 수치 예보 모형 자료 및 인공위성 자료를 이용하고 자료와 강수예측치의 물리적 상관 특성을 나타내기 위하여 자료 사이의 비선형 거동을 잘 나타내는 신경망 모형에 적용시켜 단시간 강수 예측을 수행하였다. 이를 위하여 서울지점에 대하여 현재로부터 3시간, 6시간, 9시간, 12시간의 선행시간을 가지는 인공위성 자료(MTSAT-1R) 및 수치 예보 모형 자료(RDAPS, Regional Data Assimilation and Prediction System)와 실시간 전송되는 자동 기상 관측 시스템(AWS, Automatic Weather System)의 관측치를 신경망 모형의 입력 자료로 하여 3시간, 6시간, 9시간, 12시간의 선행시간을 가지는 자료로 강수를 예측 할 수 있는 강수 예측 모형을 개발하였다. 장마와 태풍과 같이 전선형강수와 선풍형강수 등 강수 양상의 차이를 고려하기 위하여 6월, 7월과 8월, 9월 자료를 구분하여 신경망을 구축하였으며, 자료가용성에 기초하여 2006년에서 2008년 기간 동안에 대하여 모형을 학습하고 2009년에 대하여 모형의 적용성을 검증한 결과, 단시간 강수예측에 대한 모형의 적용 가능성을 보여주었으나 다양한 광역 자료와 인공신경망을 사용함에도 불구하고 단시간 강수예측의 정량적 정도향상을 위한 여지가 많음을 보여준다.
        6.
        2011.12 KCI 등재 서비스 종료(열람 제한)
        RDAPS 수치예보로부터 생산된 일단위 강우시계열을 바탕으로 유량 예측을 모의하고, 정성적인 중장기 예보를 고려한 ESP 분석을 수행하여 결과를 비교하고 적용성을 검토하였다. 금강유역을 대상으로 ESP, 정성적 기상예보를 고려한 ESP, RDAPS 기상수치예보에의한유량예측결과를평균유출량과비교 분석을 통해각기법별 결과의 개선효과를 평가하였다. 예측 모의 결과 기상정보를 고려한 ESP 방법의 결과가상대적으로 양호한 것으로 분석되었다. 확률예측의 정확도를 평
        7.
        2011.02 KCI 등재 서비스 종료(열람 제한)
        수문학적 예측에 있어서 강우수치예보의 활용성을 제고하기 위하여 인공신경망을 이용한 정량강수예측기법을 제시하였다. 본 연구에서는 2001년 6월과 7월, 2002년 8월의 중규모수치예보자료와 AWS의 3시간 누적강수, 상층기상관측소에서의 가강수량과 상대습도, 각 선행시간별 강수발생확률을 이용하여 각 선행시간에 따른 강수량을 예측하였다. 강수는 대기변수의 물리적 비선형조합으로 발생하기 때문에 강수에 영향을 미치는 대기변수와 관측강수사이의 비선형관계를 고려하