CSA, a cement mineral compound that is mainly composed of 3CaO·3Al2O3·CaSO4, generates ettringite as a hydration product after a reaction with glass (lime), gypsum and water to speed up the hardening process and enhance the strength and degree of expansion. When used as a cement admixture, there is increased production of ettringite, which can improve the initial strength in the first three days and ameliorate the reduction in the initial strength caused by the use of fly ash in particular. In this study, a hydrate analysis was performed using XRD and SEM after substitution with fly ash (30%) and CSA (8%) with the goal of observing the effect of CSA on the initial strength of a cement mixture containing fly ash. The results of the analysis showed that an addition of CSA promoted the production of ettringite and improved the initial strength, resulting in the generation of hydrates, which can effectively enhance the long-term strength of these materials.
염화희토류 수화물(RECl3·xH2O) 내 존재하는 수분을 제거하기 위하여 탈수화 장치를 제작하여 8가지 (La, Ce, Nd, Pr, Sm. Eu, Gd, Y)Cl3·xH2O에 대한 탈수화 실험을 수행하였다. 탈수화 과정 중 희토류옥 시염화물의 형성을 억제하기 위하여 TGA 분석을 바탕으로 하여 단계적인 온도 상승(80→150→230℃)구 간을 설정하였으며 증발된 수분의 원활한 이동을 위하여 예열된 Ar 가스와 vacuum pump를 이용하였다. 각 온도구간에서의 탈수화 정도를 살펴본 결과 YCl3·xH2O를 제외한 염화희토류 수화물은 원자번호가 높을수록 높은 온도에서 더 많은 탈수화가 일어남을 알 수 있었다. 탈수화 과정 후 희토류옥시염화물의 형성은 보이지 않았으며 염화 희토류 수화물 내 수분을 10%이하로 감소시킬 수 있었다.
Various anti-scattering agents for suppression of dust scattering at waste depository were compared in this study. Based on the price, easy of usage, and no toxicity, 1% of Al2(SO4)3 was selected as surface hardening agents. Only lower than 2% of total weight were flied when wind speed was monthly maximum velocity during 1 hr. These results were quite good with comparison of S anti-scattering agents which was made by C company in Korea. When Al2(SO4)3 was spread, the surface waste became hard therefore the effect of suppression of scattering dust was long lasting. It was recommend that 2% of Al2(SO4)3 was spread to keep suppression of scattering dust when sudden gust of wind such as natural disaster was occurred.
수산화물법에 의해 제작된 α-stannic acid의 열분해 거동과 SnO2분말의 성질에 미치는 잔류염소이온의 영향을 관찰하였다. SnCl4와 NH4OH 수용액을 중화시켜 α-stannic acid침전물을 제작하고 NH4NO3수용액으로 세척하였다. 분말내의 잔류 염소이온의 양을 주절하기 위하여 세척정도를 3단계로 조정하였다. 세척후 100˚C에서 건조하고, 500˚C ~ 1100˚C에서 하소함으로써 SnO2분말을 제조하였다. α-stannic acid의열분해 거동ㅇ르 DT-TGA 와 FTIR을 통하여 관찰하고, SnO2분말의 조성과 입자크기 및 비표면적을 각각 AES, TEM 및 BET을 통하여 측정하였다. 잔류 염소이온 양이 감소되면, 저온 하소시 일차입자의 상대적 크기가 커지는 반면 고온하소시에는 상대적으로 감소되었ㄷ. 잔류 염소이온의 일부는 α-stannic acid내의 격자산소 자리에 위치함으로써, 저온가열시 결정수탈리와 결정화를 지연시키고 또한 고온가열시에는 이의 증발에 의해 산소공공이 생성되어 소결을 촉진시킨다고 제의하였다.
Background : Zinc (Zn) is one of dietary micronutrients and it is second highest trace element in the body. Over 95% of Zn is located in the cells, but its dominant storage site is absent in the body. Deficiency of Zn may result in anorexia, dysgeusia, dysosmia, skin rash, infection, alopecia, growth failure, and impaired wound healing. Therefore, adequate supplementation of Zn is very important to maintain normal physiological conditions.
Methods and Results : Zinc sulfate monohydrate (ZnSO4)-loaded nanocomposites (NCs) were fabricated by using a hot-melt extruder (HME) system. Soluplus (SP) was adopted as an amphiphilic polymer matrix for HME processing. The micro-size of ZnSO4 dispersion was reduced to nano-size by HME processing with the use of SP. ZnSO4 could be homogeneously dispersed in SP through HME processing. ZnSO4/SP NCs with a 75 ㎚ mean diameter, a 0.1 polydispersity index, and a -1 mV zeta potential value were prepared. The physicochemical properties of ZnSO4/SP NCs and the existence of SP in ZnSO4/SP NCs were further investigated by solid-state studies. Nano-size range of ZnSO4/SP NC dispersion was maintained in the simulated gastrointestinal environments (pH 1.2 and 6.8 media). No severe toxicity in intestinal epithelium after oral administration of ZnSO4/SP NCs (at 100 ㎎/㎏ dose of ZnSO4, single dosing) was observed in rats.
Conclusion : These results imply that developed ZnSO4/SP NC can be used as a promising nano-sized zinc supplement formulation. In addition, developed HME technology can be widely applied to fabricate nano formulations of inorganic materials.
The purpose of this study is to explore the time dependant behaviors of chloride ions adsorption with cement hydrates, focused on its mechanism. AFt phase and CH phase were not able to absorb chloride ion, however, C-S-H phase and AFm phase had a significant chloride adsorption capacity. Based on the results, this study suggested theoretical approach to depict chloride adsorption behavior with elapsed time of C-S-H phase and AFm phase effectively. AFm phase showed a slow chemical adsorption in 40 days, while C-S-H phase showed binding behavior with 3 stages including the stage of instantaneous physical adsorption other stages.
Concrete strength is not only an important factor in design and quality control, but it also represents the overall qualityof concrete. The use of admixture has been increasingly prevalent in the recent cases of concrete production as a meansto improve the functionality of concrete. Of particular note, fly ash is added in either the cement or the ready-mixedconcrete production stage with the general mixing ratio being about 15%; however, using fly ash slows down the initialhydration of the binding material, which can in turn cause a delay in acquisition of strength. In this study, calcium sulfoaluminate (C4A3S; CSA) was added to improve the initial strength of cement after the use of fly ash, and its effect instrength improvement was analyzed. The substitution ratios of fly ash were 0, 10, 20 and 30%, and the amount of CSAadded to improve the initial strength was 8% of the fly ash weight. The results of the experiment showed that adding CSA resulted in high calorific values at peaks 1 and 2 of hydration heat, and an X-ray diffraction analysis showed thatthe amount of unhydrated materials was higher with increasing substitution ratio of fly ash. An increase in CSA wasalso shown to lead to a higher amount of ettringite being generated in the early ages. In conclusion, addition of 30% flyash and 8% CSA led to an ettringite production that was 3 times higher than the mixing ratio of fly ash, which effectivelyimproved the initial strength. The same phenomenon was observed in the electron microscope analysis. Based on theseresults, it was determined that adding CSA in an amount that equaled to 8% of fly ash weight can promote the productionof ettringite, thereby improving the initial strength, which gets reduced by the use of fly ash.
알팔파 (Medicago sativa L.)의 예취후 재생 기간중 저장탄수화물의 이용성을 규명하기 위해 수경재배하여 개화초기에 예취한 후 재생 24일간의 뿌리내 비구조탄수화물의 함량 및 전분 분해효소의 활력을 분석한 결과는 아래와 같다. 1. 재생초기 10일간의 잎과 줄기의 재생은 매우 느리게 진행되었으며, 예취후 뿌리의 성장이 억제되었다. 2. 예취후 초기재생 10∼14일간 뿌리내 가용성 당 및 전분의 함량은 다같이 감소하였다가 이후 빠르게 회복하는 경향이었다. 3. 재생기간중 exo-amylase의 평균 활력은endo-amylase에 비해 약 400배 이상 높았다. Exo-amylase의 활력은 재생 6일차(최고수준) 까지 증가하다가 이후 감소하였다. Endo-amylase의 활력은 재생초기 4일 동안 급격히 증가하다가 이후 재생 24일차(최고수준) 까지 서서히 증가하는 경향이었다. 이상의 결과들은 알팔파의 재생초기 동안 전분 분해효소의 활력의 증가와 아울러 뿌리내 저장탄수화물은 활발히 분해되어 새로운 조직의 재생에 이 용됨을 간접적으로 제시한다.