Various anti-scattering agents for suppression of dust scattering at waste depository were compared in this study. Based on the price, easy of usage, and no toxicity, 1% of Al2(SO4)3 was selected as surface hardening agents. Only lower than 2% of total weight were flied when wind speed was monthly maximum velocity during 1 hr. These results were quite good with comparison of S anti-scattering agents which was made by C company in Korea. When Al2(SO4)3 was spread, the surface waste became hard therefore the effect of suppression of scattering dust was long lasting. It was recommend that 2% of Al2(SO4)3 was spread to keep suppression of scattering dust when sudden gust of wind such as natural disaster was occurred.
HOMO(the highest occupied molecular orbital) and LUMO(the lowest unoccupied molecular orbital) of four recalcitrant polycyclic aromatic hydrocarbons (PAHs) were calculated by MOPAC program(CaChe Co). The previous papers which reported experimental results about radical reaction of PAHs were reviewed. The reported radical reaction positions of four PAHs corresponded with predicted positions in which δE(HOMO-LUMO) was high. From these results, it appears that determining the δE(HOMO-LUMO) of a PAH is a promising method for predicting the radical reaction position.
Based on the experiment results of laboratory scale modified anoxic-oxic process for leachate treatment, biological nitrogen removal program was verified in terms of SS, COD, and TN concentration. These measured water qualities concentration could be predicted by biological nitrogen removal program with R2 of 0.994, 0.987, 0.990, respectively. No error was occurred between water qualities concentration and quite wide range of water qualities concentration (i.e., 50-4200 mg/L) during the modelling. Each unit and final effluent of simulated concentration was kept good relationship with that of measured concentration therefore this biological nitrogen removal program for sewage or wastewater treatment plants has good reliance.
This paper presents applicability of photocatalytic decomposition of methyl mercaptan using TiO2. A quartz reactor was used in order to elucidate reaction pathway in photocatalytic decomposition of methyl mercaptan. Experimental results showed that more than 99.9% of methyl mercaptan was decomposed within 30 minutes. It was found that the photocatalytic decomposition of methyl mercaptan followed pseudo first order and its reaction coefficient was 0.05min-1 During 30 minutes in the photocatalytic reaction, the concentration of methyl mercaptan, dimethyl disulfide, SO2, H2SO4, COS, H2S were determined. These results showed that 64% of methyl mercaptan were compensated for the increase in sulfur after 30 minutes through the mineralization. The proposed main photocatalytic decomposition pathway of methyl mercaptan was methyl mercaptan→dimethyl disulfide→SO2→H2SO4.
The acenaphthene(ACE) or acenaphthylene(ACEL) is one of the most frequently found compound in polycyclic aromatic hydrocarbon (PAH)-contaminated soil. In this study, we make 10mg/L ACE or ACEL in ethanol which is the model washing solvent for contaminated soil. This was followed by Fenton treatment in which 0.2 or 0.3mL of 30% H2O2 and 0.2 ml of 0.5 M Fe2+ were added. The results showed more than 88 or 99% of ACE or ACEL removal efficiency, respectively. Additionally, we employed GC-MS to identify the main oxidation product generated by the optimized Fenton oxidation [i.e., ACE or ACEL degraded in to 21, 34 % 1,8-naphthalic anhydride(NAPAN), repectively]. It is expected that biodegradability of NAPAN is enhanced because NAPAN has three oxygens compared with ACE and ACEL. Therefore the results suggest that the hybrid treatment system (i.e., ethanol washing -Fenton oxidation treatment) can be effectively applied to remove ACE or ACEL from soil..
Theoretical total nitrogen removal efficiency and reactor volume ratio in oxic-anoxic-oxic system can be found by influent water quality in this study. The influent water quality items for calculation were ammonia, nitrite, nitrate, alkalinity, and COD which can affect nitrification and denitrification reaction. Total nitrogen removal efficiency depends on influent allocation ratio. The total nitrogen removal follows the equation of 1/(1+b). Optimal reactor volume ratio for maximum TN removal efficiency was expressed by those influent water quality and nitrification/denitrification rate constants. It was possible to expect optimal reactor volume ratio by the calculation with the standard deviation of ±14.2.
In this paper, magenta coupler was prepared by the reaction of 1-(2,4,6-Trichlorophenyl)-3-(5-amino-2-chloroanilino)-5-pyrazolone with 2,4-di-tert-pentyl-phenoxy butanoyl chloride in the presence of pyridine. The product was identified by using various analytical tools such as melting point, elemental analyzer, IR spectrophotometer, UV-Vis spectrophotometer and GC-mass spectrometer. The reaction of magenta coupler with CD-3 (color development agent) was shown magenta color.
In general, water treatment sludge (WTS) had high concentration of heavy metal, thus it made the reuse or recycling of WTS difficult. The optimal solidification conditions for maximum suppression of heavy metal elution from WTS were decided in this study. Under the optimal solidification conditions (i.e., temperature, 320℃; ratio of WTS and MgO, 9:1; solidification time, 1hr), all of heavy metal including aluminum were not detected. Therefore there are no problems for reuse or recycling of WTS which was solidified under the optimal solidification conditions found in the study.
This study was aimed to investigate treatment feasibility of leachate from D landfill that is located in gyr대ungbuk. From the analytical results of leachate, organic and nonbiodegradable matters were contained in high concentration. Thus chemical treatment was introduced to degrade nonbiodegradable matters in pre or post biological process. Two types of Fenton oxidation were adapted in this study. The first one is pre treatment process before biological treatment. The second one is post treatment process after biological treatment. The optimal conditions of both treatment methods were investigated as follows. In case of pre treatment process, the optimal conditions appeared in Fe+2/H2O2(mmol/mmol): 0.1, H2O2/CODcr(mg/mg): 27.0, pH: 3 and reaction time: 2hrs. On the other hand, in case of post treatment process, the optimal conditions appeared in Fe2+(mmol/mmol): 0.14, H2O2/CODcr(mg/mg): 57.4, pH: 3 and reaction time: 1.25hrs. In the above optimal conditions, high COD removal was obtained in pre and post treatment process. Also it can expect that Fenton oxidation converted nonbiodegradable matters into biodegradable matters.
This paper presents applicability of Fenton oxidation to perchloroethylene(PCE) contaminated soil. The initial concentration of PCE was 187mg/kg and Fenton oxidation conditions were 1.0M H2O2 and 0.5M Fe2+. More than 97% of PCE decomposition and 98% of dechlorination were obtained within 5 hrs. It was found that the decomposition of PCE by Fenton oxidation was followed pseudo first order and its reaction coefficient was 0.78 hr-1. GC-MS and GC-ECD analysis of reaction intermediates confirmed only the presence of trichloroacetic acid(i.e., 1.0% of initial PCE concentration). Under Fenton oxidation conditions, it was proposed that PCE was decomposed not simultaneously but one by one.
Step-feed process for biological nitrogen removal were analyzed numerically for the each unit and final total nitrogen(TN) effluent by water quality management(WQM) model and the results were compared data from these wastewater treatment plants. No bugs and logic error were occurred during simulation work. All of the simulation results tried to two times were obtained and both results were almost same as this model has become good reappearance. It was concluded that most of nitrogen removal occurred in the first oxic tank. Thus the controlling of the first anoxic tank may be more important in term of nitrogen removal. Also each unit of simulation result was kept good relationship with that of measured data. Accordingly this WQM model has good reliance. Finally, WQM model can predict final TN effluent within ±6.0mg/l.
Ethanol washing with distillation as a cleanup process of polycyclic aromatic hydrocarbon(PAH)-contaminated soil was investigated in this study. A multistage ethanol washing with distillation process was applied to three different types of soil, i.e., sandy soil, alluvial soil, and clay with the initial concentration of benzo(a)pyrene 10 mg/kg, benz(a)anthracene 250 mg/kg, and pyrene 100 mg/kg soil. Ethanol was selected as washing solvent because of its high PAH removal efficiency, low cost, and non-toxicity comparing to the other solvent such as isopropyl alcohol and sodium dodecyl sulfate. The satisfactory results (i.e. lower than benzo(a)pyrene 1 mg/kg, pyrene 10 mg/kg, benz(a)anthracene 25 mg/kg, which are the Canada or the Netherlands soil standard) for three types of soils were obtained by at most five-six times washing. It was suggested that organic content in soil decreased the removal efficiency by ethanol washing.
The hydrochemistry of groundwater from 47 wells in the Chungwon area, Korea was analyzed to examine the occurrence of natural radionuclides like uranium and radon. The range of Electrical Conductivity (EC) value in the study area was 67∼1,404 μS/cm. In addition to the high EC value, the content of cations and anions also tends to increase. Uranium concentrations ranged from ND~178 μg/L (median value, 0.8 μg/L) and radon concentrations ranged from 80~12,900 pCi/L (median value, 1,250 pCi/L). Uranium concentrations in one well, that is 2.8% of the samples, exceeded 30 μg/L, which is the Maximum Contaminant Level (MCL) proposed by the US Environmental Protection Agency (EPA), based on the chemical toxicity of uranium. Radon concentrations in three wells, that is 6% of the samples, and one well, that is 2.8% of the samples, exceeded 4,000 pCi/L (AMCL of the US EPA) and 8,100 pCi/L (Finland’s guideline level), respectively. Concentrations of uranium and radon related to geology of the study area show the highest values in the groundwater of the granite area. The uranium and radon contents in the groundwater were found to be low compared to those of other countries with similar geological settings. It is likely that the measured value was lower than the actual content due to the inflow of shallow groundwater by the lack of casing and grouting.
Each four polycyclic aromatic hydrocarbons (PAHs) was reacted with OH radical at 1.5 Å distance by CAChe MOPAC 2000 program. These results were compared to those reported experimental results. Reaction positions of all four PAHs corresponded with predicted positions in which ⊿E(HOMO-LUMO) was approximately 4.7. Finally oxygen of OH radical combined with PAH and quinone form of products were produced. These results indicate that the proposed determining the ⊿E(HOMO-LUMO) can be effectively applied to predict reaction position of recalcitrant compounds such as dioxins, PCBs, POPs, and etc.
Anoxic-oxic process were analyzed numerically for the each unit and final TN effluent by Water Quality Management(WQM) model and the results were compared data from these sewage or wastewater treatment plants. No bugs and logic error were occurred during simulation work. All of the simulation results tried to two times were obtained and both results were almost same thus this model has good reappearance. A few of simulation results were deviated with measured data because lack of influent water qualities are reported however simulation results have wholly good relationship with measured data. Also each unit of simulation result was kept good relationship with that of measured data therefore this WQM model has good reliance. Finally, WQM model predicts final TN effluent within ±4.1 ㎎/ℓ.
Twenty-two water samples(fifteen groundwater and seven geothermal water samples) were collected to elucidate chemical characteristics of the ground and geothermal waters in the Haeundae hot-spring area and its vicinity. Major and minor elements were analyzed for ground and geothermal water samples. The concentrations of K-, Na-, Ca2+, SO42-, Cl-, F+ and SiO2 were higher in the geothermal water samples than the groundwater samples except HCO3 and Mg2+ ions. Based on the contents of Fe, Zn, Cu, Al, Mn and Pb, some of the ground and geothermal water samples are contaminated by anthropogenic sources. The ground waters shown on the Piper diagram belong to Ca-HCO3 type, while the geothermal waters Na-Cl type. The graphs of Cl- versus Na+, Ca2+ Mg2+, K-, SO42- and HCO3- indicate that the groundwater is related partly with mineral-water reaction and partly with anthropogenic contamination, while the geothermal water is related with saline water. On the phase stability diagram, groundwater and thermal water mostly fall in the field of stability of kaolinite. This indicates that the ground and geothermal waters proceed with forming kaolinite. Factor and correlation analyses were carried out to simplify the physicochemical data into grouping some factors and to find interaction between them. Based on the Na-K, Na-K-Ca and Na-K-Ca-Mg geothermometers and silica geothermometers, the geothermal reservoir is estimated to have equilibrium temperature between 125℃ and 160℃.
Spring, ground and thermal waters in the vicinity of Mt. Geumjeong and Mt. Baekyang area have been sampled and analyzed for major and minor elements. According to the Piper diagram, spring water belongs to Ca-HCO3 and Na-HCO3 types, groundwater to Ca-HCO3 type, and thermal water to Na-Cl type. Based on the phase stability diagrams of [Ca2+]/[H+]2, [Mg2+]/[H+]2, [K+]/[H+], and [Na+]/[H+] vs. [H4SiO4], spring water, groundwater and thermal water are mostly in equilibrium with kaolinite. The result of factor analysis shows three factors (factor 1, 2 and factor 3) for the spring water, the groundwater and the thermal water which are represented by the influence of the dissolution of feldspar, calcite, anthropogenic sources (domestic and industrial wastes) and salt water.