Small and medium-sized manufacturing enterprises(SMEs) have traditionally relied on skilled labor to support multi-variety, small-batch production. However, demographic changes such as low birth rates and aging populations have led to severe labor shortages, prompting increased interest in collaborative robots(cobots) as a viable alternative. Despite this necessity, many SMEs continue to face significant challenges in implementing such technologies due to technical, organizational, and environmental(TOE) constraints. While prior research has mainly focused on technology adoption from the perspective of user organizations, this study adopts a differentiated approach by analyzing adoption factors from the perspective of smart factory experts—specifically, evaluators/mentors and solution providers—who play a critical role in Korea’s policy-driven smart manufacturing environment. Using the Analytic Hierarchy Process(AHP), the study evaluates the relative importance and prioritization of adoption factors across three dimensions: technology, organization, and environment. Survey data collected from 20 smart factory experts indicate that top management support, relative advantage, and safety are key determinants in cobot adoption. Furthermore, the findings reveal that organizational readiness and technical effectiveness have greater influence on implementation decisions than external pressures such as partner pressure. This study provides new insights by incorporating expert perspectives into the adoption framework and offers practical policy and managerial implications to support cobots implementation in the SMEs.
As the Fourth Industrial Revolution advances, smart factories have become a new manufacturing paradigm, integrating technologies such as Information and Communication Technology (ICT), the Internet of Things (IoT), Artificial Intelligence (AI), and big data analytics to overcome traditional manufacturing limitations and enhance global competitiveness. This study offers a comprehensive approach by evaluating both technological and economic performance of smart factory Research and Development (R&D) projects, addressing gaps in previous studies that focused narrowly on either aspect. The research combines Latent Dirichlet Allocation (LDA) topic modeling and Data Envelopment Analysis (DEA) to quantitatively compare the efficiency of various topics. This integrated approach not only identifies key research themes but also evaluates how effectively resources are utilized within each theme, supporting strategic decision-making for optimal resource allocation. Additionally, non-parametric statistical tests are applied to detect performance differences between topics, providing insights into areas of comparative advantage. Unlike traditional DEA methods, which face limitations in generalizing results, this study offers a more nuanced analysis by benchmarking efficiency across thematic areas. The findings highlight the superior performance of projects incorporating AI, IoT, and big data, as well as those led by the Ministry of Trade, Industry, and Energy (MOTIE) and small and medium-sized enterprises (SMEs). The regional analysis reveals significant contributions from non-metropolitan areas, emphasizing the need for balanced development. This research provides policymakers and industry leaders with strategic insights, guiding the efficient allocation of R&D resources and fostering the development of smart factories aligned with global trends and national goals.
In this study, we propose a novel approach to analyze big data related to patents in the field of smart factories, utilizing the Latent Dirichlet Allocation (LDA) topic modeling method and the generative artificial intelligence technology, ChatGPT. Our method includes extracting valuable insights from a large data-set of associated patents using LDA to identify latent topics and their corresponding patent documents. Additionally, we validate the suitability of the topics generated using generative AI technology and review the results with domain experts. We also employ the powerful big data analysis tool, KNIME, to preprocess and visualize the patent data, facilitating a better understanding of the global patent landscape and enabling a comparative analysis with the domestic patent environment. In order to explore quantitative and qualitative comparative advantages at this juncture, we have selected six indicators for conducting a quantitative analysis. Consequently, our approach allows us to explore the distinctive characteristics and investment directions of individual countries in the context of research and development and commercialization, based on a global-scale patent analysis in the field of smart factories. We anticipate that our findings, based on the analysis of global patent data in the field of smart factories, will serve as vital guidance for determining individual countries' directions in research and development investment. Furthermore, we propose a novel utilization of GhatGPT as a tool for validating the suitability of selected topics for policy makers who must choose topics across various scientific and technological domains.
Manufacturing process mining performs various data analyzes of performance on event logs that record production. That is, it analyzes the event log data accumulated in the information system and extracts useful information necessary for business execution. Process data analysis by process mining analyzes actual data extracted from manufacturing execution systems (MES) to enable accurate manufacturing process analysis. In order to continuously manage and improve manufacturing and manufacturing processes, there is a need to structure, monitor and analyze the processes, but there is a lack of suitable technology to use. The purpose of this research is to propose a manufacturing process analysis method using process mining and to establish a manufacturing process mining system by analyzing empirical data. In this research, the manufacturing process was analyzed by process mining technology using transaction data extracted from MES. A relationship model of the manufacturing process and equipment was derived, and various performance analyzes were performed on the derived process model from the viewpoint of work, equipment, and time. The results of this analysis are highly effective in shortening process lead times (bottleneck analysis, time analysis), improving productivity (throughput analysis), and reducing costs (equipment analysis).
The purpose of this study is to suggest a plan to improve the level of acceptance of related technologies and the transition to smart factories of small and medium-sized manufacturing enterprises by using ‘technology readiness’ and ‘integrated technology acceptance model’. To this end, the research hypothesis was verified by collecting questionnaire data from 130 small and medium- sized manufacturing companies in Korea and conducting path analysis. First, optimism affects performance expectations, social influence, and facilitation conditions, innovation affects performance expectations, effort expectations, and social influence, discomfort affects performance expectations, social influence, and facilitation conditions, and anxiety affects effort expectations, social influence and facilitation conditions. has been proven to affect Finally, performance expectations, effort expectations, social influence, and facilitation conditions were verified to have a significant positive effect on the intention to accept technology.
The construction of smart factories for government SMEs is not easy due to the lack of professional manpower. The use of retired professionals is a way to solve the problem to some extent and to solve the job problem of seniors by effectively utilizing social assets. This study examines the effectiveness of using Meister based on a survey of 195 companies participating in the Smart Meister Support Program. As a result, the better pre-participation readiness and the better management and coordination of change during the participation, the more significant influence was on Meister’s ability development and corporate performance. In particular, it was confirmed that Meister’s competence plays a role in both ‘pre-participation readiness and business performance’ and ‘between change management during participation and business performance’. In order to improve the performance of the smart meister business in the future, it is necessary to proactively promote the purpose and purpose of the business targeting companies that wish to participate in the business. In addition, it was found that it is necessary to support the development of change management in order to minimize the resistance to innovation during the project. It will be possible to enhance social competitiveness by resolving senior jobs and strengthening the competitiveness of SMEs by discovering and utilizing Meister, who is an expert among retirees.