Plasma polymerized Styrene thin films were used as a memory layer in a memory device. As for the memory layer, a ppS thin films were used for the organic memory device and their charge storage characteristic was investigated comparatively, where the charge storage effect was evaluated by a hysteresis voltage. The organic memory device with ppS thin film of 30nm and 50nm as memory layer showed promising memory characteristics such as hysteresis voltage of 20V and 28V. The ppS revealed promising charge storage properties which confirms that an organic memory device without floating gate could be successfully implemented by using the ppS thin film as a memory layer.
This study aims to evaluate the relationship with the concentration and odor intensity using the odor sensory method for 5 types of aldehyde compounds and styrene. For the measurement, 13 panelists were selected by several criteria through a panel test. The estimation showed that the correlation of the concentration with odor intensity for the 12 compounds including of the sulfur compounds, ammonia, and trimethylamine can be reasonably expressed by the equation I = Aㆍlog C + B (I : odor Intensity, C : material concentration, A : material constant, B : constant). The equations show the sensivities of intensity change for the change of concentration. According to the increase of concentration the odor intensities for acetaldehyde and iso-valeraldehyde increase larger than for the other aldehydes. Regulation standards of 12 species of odor substance concentraton and odor intensity by using the correlation equation was reviewed for adequacy. It was evaluated that the regulation standards on site boundary in operation are too low for NH₃, DMDS, and iso-valeraldehyde and too high for TMA. The result of this study is suggested to be used as a base data for research on measures to improve the regulation standards for complex odor concentration on site boundary in operation.
This study was aimed to evaluate the relationship between the concentration and dilution factor (ratio) using the Air Dilution Olfactory Method, which is suggested in the Standard Method of Odor Compounds, by measuring dilution factor for 5 types of aldehyde compounds and styrene. For the measurement, 13 panelists were selected by several criteria through panel test. Panelists chosen for their closely similar sensitivities provide more reproducible values. The estimation showed that the correlation of the concentration with dilution factor for the 12 compounds including the sulfur compounds, ammonia, and trimethylamine can be reasonably expressed by the equation log C=Af∙logD+F(Af: material constant, F: constant). The result of this study is suggested to be used as a base data for research on measures to improve the regulation standards for complex odor concentration on site boundary in operation, as well as a correlation between the concentration and dilution factor for the designated foul odor substances, and their characteristics.
This study aims to understand the correlation between odor intensity and dilution factor using the Air Dilution Olfactory Method, which is suggested in the Standard method of Odor Compounds, by measuring odor intensity and dilution factor for NH₃, TMA and styrene. For the measurement, 13 panel members were selected through a panel test, and odor intensity and dilution factor by substance produced from the selected panel were estimated. The estimation showed that the correlation of odor intensity with dilution factor for NH₃, TMA and styrene can be reasonably expressed by the equation [I=AㆍLog D +0.5]. The result of this study is suggested to be used as a base data for research on measures to improve the regulation standards for complex odor concentration at a boundary site in operation, as well as a correlation between odor intensity, concentration and dilution factor for the designated odor substances, and their characteristics.