Despite its profound impact on athletic performance, the significance of heart rate recovery (HRR) has been insufficiently addressed in the filed of sports science, particularly in the context of weightlifting characterized by brief and intense exertions involving heavy weights. Serving as a valuable indicator of autonomic nervous system and cardiovascular function, HRR assumes a pivotal role in weightlifting. This comprehensive review aims to delineate the specific demands for HRR in weightlifting, shedding light on the often overlooked cardiovascular considerations within training regimes focused on strength and power. The investigation scrutinizes the repercussions of HRR on weightlifting performance, seeking to elucidate how inadequate recovery intervals may result in physiological and psychological consequences. These consequences encompass a distorted perception of effort, disruption of coordination, compromised posture due to irregular breathing, and an overall decline in lifting capacity. The review systematically presents compelling evidence pertaining to heart rate response and recovery patterns during weightlifting, underscoring the critical importance of well-structured rest periods. Furthermore, the review delves into a comprehensive discussion of factors influencing HRR in weightlifting, encompassing variables such as sex, age, cardiovascular function, hydration, nutrition, and psychological aspects. Finally, a key emphasis is placed on the integration of effective HRR techniques into the training regimens of weightlifters, thereby ensuring sustained and optimized performance outcomes.
Heart rate is a relatively simple and non-invasive method that is used as an important physiological indicator in many studies and has a close relationship with heart structure and function, cardiovascular disease and sudden cardiac death. In general, appropriately low heart rate during resting means effective heart function and cardiovascular fitness; heart rate at recovery is an important indicator of health and disease condition. We found a beagle dog (Dog_1) with a high heart rate in the previous preliminary experiment. Therefore, purpose of this study was to compare the heart rate response of the Dog_1 with the control group during 12 weeks of interval exercise, to evaluate the structural and functional abnormalities of the heart and to verify the applicability of exercise program. Heart rate was checked during 12 weeks of interval exercise, and after the exercise was over, imaging examination and hematological and serum biochemistry were performed. As a result, Dog_1 (165.6 ± 1.5) showed significantly higher heart rate in low intensity session of interval exercise than control group (133.3 ± 0.5, p < 0.01). In addition, Dog_1 (181.2 ± 1.4) showed significantly higher heart rate than control group (155.1 ± 0.9) in high intensity session (p < 0.01). The heart rate (30 sec, 60 sec) during recovery state was higher in Dog_1 (30 sec: 156.8 ± 4.0, 60 sec: 166.8 ± 5.8) than in the control group (30 sec: 111.2 ± 2.5, 60 sec: 104.0 ± 5.1, p < 0.01). The results of the imaging examination of Dog_1 with high heart rate confirmed that the heart had no functional and structural abnormalities. All beagles with the interval exercise program did not show maladjustment, and in the hematological and serum biochemistry results, all the parameter were within the reference range. If the interval exercise program of this study is used in the future, it is expected to be used as an important basic data to achieve the purpose of health, welfare, and physical fitness improvement of dogs.
본 연구는 12주간의 핀수영 운동이 남자 청소년의 뇌파, 혈압 및 안정 시 심박수에 미치는 영향을 규명하는데 그 목적이 있다. 18명의 남자 청소년을 핀수영 운동집단 9명과 통제집단 9명으로 구성하였다. 핀수영 운동집단은 12주간 주3회 60분씩 핀수영을 실시하였다. 측정된 자료 중 뇌파변인들은 이원변량 반복측정 분산분석(Two way repeated measures ANOVA)에 의해 분석되었고 안정 시 심박수와 혈압 변인들의 분석은 공분산 분석(ANCOVA)과 대응표본 t-test(Paired t-test)를 실시하였다. 결과적으로 핀수영 집단에서는 Alpha파와 SMR파의 유의한 증가가 나타났고, Theta파의 유의한 감소가 나타났다. 통제집단에서는 Alpha파의 유의한 감소가 나타났다. Alpha파, Theta파와 SMR파 모두에서 시기와 집단 간 유의한 상호작용이 나타났다. 또한 핀수영 집단에서 안정 시 심박수, 수축 및 이완기 혈압의 유의한 감소가 나타났고 안정 시 심박수와 수축기 혈압에서 집단 간 유의한 차이가 나타났다. 하지만 이완기 혈압에서는 집단 간 유의한 차이가 나타나지 않았다. 이상의 결과로 12주간의 핀수영 운동은 청소년의 뇌파, 안정 시 심박수 및 혈압에 긍정적인 영향을 미친 것으로 보인다.
본 연구에서는 스트로보광의 자극효과를 검토할 목적으로 스트로보광 강도에 따른 전갱이의 반응을 심박수의 변화로 조사하였다. 실험은 10Hz의 스트로보광강도(75 lx·s)를 1/2, 1/5, 1/15로 빛의 세기를 감소시켜, 4단계의 강도별로 심박수를 자극 전 10분간, 자극 중 30분간, 자극 후 20분간 합계 60분간을 2시간마다 3회 연속해서 측정하였다. 그 결과, 스트로보광자극 중의 심박수 증가와 자극 종료직후에 일시적으로 현저한 심박수 감소가 있었다. 스트로보광 자극효과는 자극강도의 감광에 따라 감소하였다. 반복실험에 의한 자극효과는 75 lx·s의 강도보다 약한 스크로보광 강도에서는 현저하게 나타나지 않았다.
Exercise physiology of fish was studied by means of Electro-cardio-gram(ECG) technique with wired electrode system. Effects of swimming activity on the heart rate change for carp Cyprinus carpio was observed and analysed under swimming speeds among 1~3 Body Length/s and swimming durations of 10 and 60 minutes in the flume tank. The heart rate increase during swimming activity was observed in higher speed and longer duration conditions. The exercise effect on the heart rate continued even after fish stopped swimming. The time for recovery after exercise was tended to be elongated with the higher exercise condition
The purpose of this study is to determine cardiovascular reponses to concentric, eccentric and isometric exercise applied to the knee extensor muscle group. Exercise types studied were concentric, eccentric and isometric. The subjects were sixty healthy male volunteers who had no hypertension or cardiac disease. Heart rate, systolic and diastolic blood pressure were recorded prior to starting exercise. The subjects also performed 10RM on right lower extremity. A N-K table was used for three exercises to right knee extensors. Each exercise was selected randomly and applied to each subject 10 times in a 10 second. After each exercise, heart rate, systolic and diastolic blood pressure were recorded immediately. Findings were as follows concectric contractions had a greater effect on the increase of systolic blood pressure and heart rate than eccentric or isometric contractions. Diastolic blood pressure is influenced only by isometric contractions. Eccentric contractions have less effect on the increase of systolic blood pressure and heart rate than concentric or isometric contractions. We hope that the results of this experiment can be adapted to exercise programs for patients with cardiac disease.