콘크리트는 수화반응에 필요한 물 이외의 자유수가 증발하게 되면 건조수축이 발생하며 이로 인해 발생한 균열은 구조물의 강도 및 내구성 저하에 영향을 미친다. 이에 건조수축에 의한 균열을 억제하기 위한 대처 방안으로 강섬유를 혼입한 강섬유보강콘크리 트에 관한 연구가 진행되고 있다. 본 연구에서는 아치형 강섬유 혼입량에 따른 건조수축 특성을 파악하고 구속건조수축 변형률을 콘크 리트에 발생하는 잔류 인장응력으로 치환하여 기존 연구 결과와 비교하였다. 자유건조수축 실험을 통해 아치형 강섬유 혼입량에 따른 건조수축 변형률의 저감효과는 미미한 수준임을 확인하였다. 구속건조수축 실험 결과, 아치형 강섬유 혼입량 증가에 따라 균열의 발생 지연 및 균열 폭 저감에 효과적인 것으로 나타났다. 또한 아치형 강섬유를 60kg/m3 혼입하였을 때 무보강 콘크리트에 발생하는 잔류 인장응력에 비해 52.4% 높은 인장강도를 가지며 구속건조수축에 대한 저항성능이 향상될 수 있음을 확인하였다.
본 연구는 유한요소 해석모델을 이용해 아치 형상을 갖는 석션 상판의 거동을 분석하였다. 평판형 및 아치형 상판의 기본적인 구조 성능에 대해 비교함으로써 아치형 상판의 이점을 설명하였다. 또한 아치형 상판의 기하 및 보강재 배치 변화에 따른 거동 변화를 비교하여 각 인자가 상판의 응력 및 변형에 미치는 영향을 조사하였다. 추가로 아치형 상판 가장자리의 경계조건 영향을 수치적으로 분석함으로써, 아치형 상판의 보강재 배치와 가물막이 벽체와의 상호거동 영향을 규명하고 이를 통해 보강형 아치형 상판의 구조설계의 기본 개념을 도출하였다. 평판형 상판과 달리 환형 보강재가 아치형 상판의 구조 거동을 확연히 개선시킬 수 있음을 확인하였으며, 방사 보강재의 역할은 상판 가장자리의 구속상태에 의존적이었다.
본 연구에서는 실대형 실험과 구조해석을 통하여 현장에서 사용되는 기둥-서까래-도리, 기둥-도리-방풍벽 접합부를 적용한 강관 골조 플라스틱 연동온실의 정적 구조 성능을 분석하였다. 실대형 재하실험 결과는 접합부를 강접합으로 가정한 구조해석 결과와 비교하여 구조물의 횡방향 강성과 각 부재의 하중분담률에서 많은 차이를 보였다. 동고 높이에서 측정한 수평변위는 실험과 구조해석의 차이가 40% 이었고 수직변위는 89%의 차이를 보였다. S3 부재의 발생응력을 기준으로 한 각 부재별 하중분담률을 비교한 결과 실험과 구조해석에서 두 배 이상의 차이를 보이는 부재가 있었으며, 하부측벽이음(S2), 기둥 상부(S7) 등 주요 부재의 실험결과가 구조해석의 하중분담률을 재현하지 않았다. 현장에서 사용하는 접합부가 충분한 강성을 확보하지 않음으로써 구조물에 작용하는 외력을 각 부재에 적절하게 전달하지 못했으며 이로 인해 구조물의 강성이 저하되는 현상이 나타났다. 설계 단계에서 일반적으로 구조 해석에 의해 결정되는 구조성능의 신뢰도는 접합부의 특성을 보다 면밀하게 고려했는지 여부에 따라 좌우 될 수 있다. 따라서 온실 구조 성능에 대한 신뢰성을 높이기 위해서는 온실에 사용되는 다양한 접합부를 고려할 수 있는 구조해석 기술의 개발이 필요하며 설계 기준에서 상세 설계 방법을 보다 명확히 규정해야 할 것으로 판단된다.
The construction of vinyl greenhouses are increasing because of economic feasibility, construction period, and construction regulations. However, the vinyl greenhouses are apt to collapse by snow load since they have a small member as a temporary structure. The 3 types of buckling such as global, member and nodal buckling could be occurred to arched structures according to characteristics of cross section. To examine the member buckling, the precision of analysis need to be enhanced. In that case, we can examine the characteristics of the those buckling. The purposes of this study are to verify buckling characteristics of structures using the method of high precision analysis with a center node of member. The results of high precision analysis bring member buckling, and in the analysis method having the center node of member, the value of strength is getting lower than a previous study.
In this paper, we present the result of analytical investigation pertaining to the structural behavior of steel-concrete composite plate girder with arch-type web stiffener. In the arch-type web stiffener located in the compression side of web, infill concrete is cast to strengthen the arch-type stiffener and also to exert resisting force against compression force. This type of composite steel-concrete plate girder bridge is built and is in service. To understand the behavior thoroughly, analytical parametric study was conducted by using the finite element method. As a result it was found that the effect of arch-type stiffener with infill concrete is considerable for the design of such type composite girder bridge.
Construction of vinyl house structures is increasing because they do not have a large cross section as non-permanent structures. Vinyl house structures are apt to collapse by snow load because they have a small size member as a temporary building. Therefore, it is very important to ensure not only the stiffness of the individual member, but also the overall stability of three-dimensional arch-type vinyl house structures.
The purpose of this study is to estimate the stability of arch-type vinyl house structures that have a various curvature under the vertical load such as snow load.
As a result of the study, the buckling load of V27 model is the largest, and the values of buckling load have a tendency to increase with increasing H(height of arch) in the case of H≤2.75m, but to decrease with increasing H in the case of H≥2.75m
When we excavate an underground to build basement, the ground anchors are needed to prevent collapse of neighboring ground, subsidence and movement. Ground anchor construction required shore sheet piles, wales and struts as to maintain secure excavation. Existing box-type bracket using head part of ground anchor can not be possibly adjustable to the boring angle because the brackets are manufactured with unified angle in a factory. Also, box-type brackets have imperfection and instability caused by inequable force. In this study, a new bracket system is proposed. The bracket's side plate is reinforced and the angle of boring can be controlled. To investigate the structural performance of presented brackets, FEM analysis has been performed by using ANSYS commercial program. As a result, this bracket shows sufficient stability for all angle case and the strength is increased about 24% than existing bracket.
충남부여에 위치한 임업화훼단지내의 유리온실에서 아치형재배(Arching method)장미에 피해를 주는 점박이응애(Tetranychus urticae Koch)의밀도를 엽당 응애수로 조사하였다. 이항표본 조사법은 엽당 점박이응애의 평균밀도(m)와 점박이응애가 T 개체보다 많이 존재하는 엽의 비율()과의 관계를 기본으로 하며, T는 경험적 이항분포모형(ln(m)=+1n(-1n(1-)))에서의 tally threshold 로서, 본 실험에서는 1, 3, 5, 7, 9를 사용하였다. 일반적으로 표본단위 수의증가는 T와 상관없이 이항분포 모형의 정확도에 영향을 거의 주지 않게 된다. 본 실험에서는 상이한 T에 따라 이항분포모형의 정확도가 차이가 났으며 T가 증가할수록 정확도가 높아졌다. 본 실험결과 점박이응애의 밀도추정을 위한 이항분포모형의 정확도를 비교한 결과, T=7인 경우가 최적의 tally threshold인 것으로 나타났다. 또한 이항분포조사법의 검정을 위하여, 동일한 포장의 독립적인 표본을 추출, 조사하였다. 본 실험결과 이항표본조사법을 이용한 상업적 유리온실의 아치형재배 장미해충인 점박이응애 평균밀도 추정에는 T=7인 경우가 가장 적절한 것으로 사료된다.
보 및 아치형 구조물은 2차원 탄성체이지만 두께가 상대적으로 매우 얇다는 특성 때문에 Kirchhoff이나 Reissner-Mindlin이론과 같이 변위장의 두께방향 변위를 선형함수로 근사화시켜왔다. 그 결과 2차원 문제가 물체의 중립면에서 표현되는 1차원 문제로 차원이 감소되어 이론적 해석이 간편해 진다. 그러나 경계에서와 같이 두께방향 변위가 복잡한 영역의 거동을 보다 정확히 해석하기 위해서는 2차원 선형 탄성이론이나 두께방향 다항식의 차수가 상당히 높아야 한다. 본 논문은 두께방향 다항식의 차수변화에 따른 해석정도 경향 및 여러 다른 차수를 한 문제 영역에 혼합하는 모델조합에 대한 내용을 제시한다.
One of the most destructive forces around greenhouses is wind. Wind loads can be obtained by multiplying velocity pressure by dimensionless wind force coefficient. Generally, wind force coefficients can be determined by wind tunnel experiments. The wind force coefficient distribution on a single - span arched greenhouse was estimated using experimental data and compared with reported values from various countries. The results obtained are as follows : 1. The coefficients obtained from this study agree with the values proposed by G. L. Nelson except about 0.5 of difference in the middle region of roof section. This discrepancy is mainly attributed to the dissimilarity of experimental conditions (or wind tunnel test such as Reynolds number, type of terrain, surface roughness of model, location of the lapping and measuring methods. 2. Considering that the wind force coefficients are varied along the height of a wall at wind direction perpendicular to wall, structural analysis using subdivided wind force coefficient distribution is more resonable for wall. 3. It is recommendable that wind force coefficient distribution on a roof should take more subdivision than the existing four equal divisions for more accurate structural design. 4. Structural design using wind forces close to real values is more advantageous in safety and expense.
The wind pressure distributions were analyzed through the wind tunnel experiment to provide fundamental criteria for the structural design on the three-span arched house according to the wind directions. In order to investigate the wind force distribution, the variation of the wind force coefficients, the mean wind force coefficients, the drag force coefficients and the lift force coefficients were estimated from the experimental data. The results obtained are as follows : 1. The variation of the wind force with the wind directions on the side walls was the greatest at the upwind edge of the walls. The change of pressure from the positive to the negative on the side walls occurred at the wind direction of 30˚ in the first house and 60˚ in the third house. 2. The maximum negative wind force along the length of the roof appeared at the length ratio of 0-0.2, when the wind directions were 90˚ in the first house, 60˚ in the second house and 30˚ in the third house. 3. The maximum negative wind force along the width of the roof appeared at the width ratio and the wind direction of 0.4 and 0˚ in the first house, 0.4-0.6 and 30˚ in the second house and 0.6 and 30˚ in the third house, respectively. 4. The maximum mean positive and negative wind forces occurred at the wind direction of 60˚ and 30˚, respectively, on the side walls of the first house, and the maximum mean negative wind force on the roof occurred at the wind direction of 30˚ in third house. 5. The maximum drag and lift forces occurred at the wind direction of 30˚, and the maximum lift force appeared in the third house. 6. The parts to be considered for the local wind forces were the edges of the walls, the edges of the x-direction of the roofs, and the locations of the width ratio of 0.4 of the first and third house and the center of the width of the second house for the y-direction of the roofs.
The wind pressure distributions were analyzed to provide fundamental criteria for the structural design on the two-span arched house according to the wind directions through the wind tunnel experiment. In order to investigate the wind force distributions, the variation of the wind force coefficients, the mean wind force coefficients, the drag force coefficients and the lift force coefficients were estimated using the experimental data. The results obtained are as follows : 1. The variation of the wind force with wind directions on the side walls was the greatest at the upwind edge of the walls. 2. The maximum negative wind force along the length of the roof appeared at the upwind edge at the wind direction of 60˚. 3. The maximum negative wind force along the width of the roof appeared at the width ratio and wind direction of 0˚ and 0.4 in the first house and 0.6 and 30˚ in the second house, respectively. 4. The mean negative wind force on the side walls of the first house at the wind direction of 0˚ was far greater than that of the second house, and the maximum negative wind force on the roof occurred at the wind direction of 30˚. 5. The maximum lift force appeared on the second house at the wind direction of 30˚, but the lift force on the first house was far greater than that on the second house at the wind direction of 0˚. 6. The parts to be considered for the local wind forces were the edges of the walls, and the edges of the x-direction and the width ratio, 0.4 of the y-direction in the roofs.
The wind pressure distributions were analyzed to provide fundamental criteria for the structural design on e single-span arched house according to the wind directions through the wind tunnel experiment. In order to investigate the wind force distributions, the variation of the wind force coefficients, the mean wind force coefficients, the drag force coefficients and the lift force coefficients were estimated by using the experimental data. The results obtained are as follows: 1. When the wind direction was normal to the wall, the maximum positive wind pressure along the height of the wall occurred approximately at two-thirds of the wall height because of the effects of boundary layer flow. 2. When the wind direction was 30˚ to the wall, the maximum positive wind force occurred at the windward edge of the wall. When the wind direction was parallel to the wall, the maximum negative wind force occurred at the windward edge of the wall. 3. The maximum negative wind force along the width of the roof appeared around the width ratio, 0.4, and that along the length of the roof appeared around the length ratio, 0.5. 4. According to the results of the mean wind force coefficients analysis, the maximum negative wind force occurred on the roof at the wind direction of 30˚. 5. The wind forces at the wind direction of 30˚ instead of 0˚ are recommended in the structural design of supports for a house. 6. To prevent partial damage of a house structure by wind forces, the local wind forces should be considered to the structural design of a house.
Numerical Analysis of corrugated-metal culvert is mainly related with corrugated shape, plate thickness, and load transmission mechanism, and these elements especially should be treated consistently in the analysis of 3-Dimensional analysis of behavior of skewed corrugated-metal culvert. And so, the modelling technic, 3-dimensional equivalent plate modelling, is required to be modified.