This study was performed to evaluate the pollutants removal characteristics of two types of RBFs(Riverbank filtration, Riverbed filtration) intake facilities installed in Nakdong River and in Hwang River respectively. The capacity of each RBF is 45,000 ㎥/d for riverbank filtration intake facility and 3,500 ㎥/d for riverbed filtration intake facility. According to data collected in the riverbank filtration site, removal rate of each pollutant was about BOD(Biochemical oxygen demand) 52%, TOC(Total organic carbon) 57%, SS(Suspended solids) 44%, Total coliforms 99% correspondingly. Furthermore, Microcystins(-LR,-YR,-RR) were not found in riverbank filtered water compared to surface water in Nakdong River. DOC(Dissolved organic carbon) and Humics which are precursors of disinfection byproduct were also reported to be removed about 59% for DOC, 65% for Humics. Based on data analysis in riverbed filtration site in Hwang River, removal rate of each contaminant reaches to BOD 33.3%, TOC 38.5%, SS 38.9%, DOC 22.2%, UV254 21.2%, Total coliforms 73.8% respectively. Additionally, microplastics were also inspected that there was no obvious removal rate in riverbed filtered water compared to surface water in Hwang River.
The algal blooms in stagnant streams and lakes have caused many problems. Excessive algae leads to disturbance of ecosystem and overload of water treatment processes. Therefore, phosphorus(P), source of algal blooms, should be controlled. In this study, a filtration trench has been developed to convert dissolved phosphorus into hydroxyapatite(HAP) so that it could be crystallized on the surface of ‘phosphorus removal granular material’; and residual particulate phosphorus could be removed by additional precipitation and filtration. The front and rear parts of filtration trench consisted of ‘phosphorus removal granular material contact bed’ and ‘limestone filtration bed’, respectively. As a result of the column test using phosphorus removal granular material and limestone serially, PO4-P was removed more than 90% when EBCT(empty bed contact time) of the contact bed was over 20 minutes; and T-P represented 60% of removal efficiency when total EBCT was over 1.5 hours. The results of column tests to figure out the sedimentation characteristics showed that more than 90% of particulate phosphorus could be removed within 24 hours. It was necessary to optimize the filtration part in order to increase removal efficiency of T-P additionally. Also, it was confirmed through the simulation of Visual MINTEQ that most of particulate phosphorus in the column tests is the form of HAP. Based on the results of the study, it could be suggested that the design parameters are over 0.5 hour of EBCT for phosphorus removal granular material contact bed and over 1.5 hours of EBCT for limestone filtration bed.
한국에서는 증가하는 용수수요에 대처하기 위해 1990년대부터 낙동강 유역의 지자체들에서 강변여과수를 활용하고 있다. 본 연구에서는 서울의 원수수질 안정을 위한 방안으로 강변여과 도입의 타당성을 검토하였다. 선행 논문에서 계층분석과정(AHP)에 의해 선택된 광나루지구에 대한 개발가능량 평가를 위해 지하수 모델링이 수행되었다. 광나루지구에서는 생태계보존지역 등을 고려하여 하천부지 약 1,200m 구간에 대해 관정시스템을 구축할 수 있을 것으로 파악되었다.
선진국에서의 강변여과수 개발은 150년 정도의 역사를 가지고 있다. 한국에서도 지속적으로 증가하고 있는 용수수요에 안정적으로 대처하기 위한 원수 확보방안으로 강변여과수에 대한 조사가 1990년대부터 4대강 유역을 중심으로 시작되었으며, 현재 낙동강을 중심으로 강변여과를 활용한 상수도 공급이 이루어지고 있다. 본 논문은 서울의 원수수질 안정을 위한 방안으로 강변여과 도입의 타당성에 대한 연구이다. 개발 적지의 선정을 위해 여러 가지 속성들을 계층적으로 분