Diglycidyl ether of bisphenol A(DGEBA)/4,4'-methylene dianiline(MDA)/phenyl glycidyl ether(PGE)-acetamide(AcAm)/carboxyl-terminated acrylonitrile butadiene copolymer(CTBN) 계의 열적 안정성을 평가하기 위해 열중량 분석법(TG)을 사용하였다. 활성화 에너지를 구하기 위해 Freeman & Carrol, kissinger, Flynn & Wall 식을 사용하였다. Freeman & Wall 식을 이용하여 구한 활성화 에너지는 112.9 kJ/mol, Kissinger 식에 의한 값은 151.5kJ/mol 이었으며, Flynn & Wall식에 의해 구한 값은 168.3 kJ/mol 이었다.
Biomass as a renewable energy source has several limitations in terms of the potential for steady supply and its thermal characteristics. This study conducted a thermal weight change analysis and determined its kinetics to address this problem. Sawdust was chosen as the biomass, and PE and PP were the plastics used. Based on the result of thermogravimetric analysis (TGA), the kinetic characteristics were analyzed using Kissinger, Ozawa, and Friedman methods, which are the most common methods used to obtain reaction coefficients and activation energy. The methods used to determine the thermal degradation kinetics were considered feasible for evaluating the pyrolytic behavior of the materials tested. The experimental results of this study provided insights into mixed biomass/plastics pyrolysis kinetics and their optimal operation conditions.
There is an increasing demand for sustainable resources due to a steady increase in energy demand. As the1996 Protocol to the London Convention takes effect, conversion of sewage sludge to energy is increasing. To use waste as fuel, it is important to understand its combustion characteristics. Using thermogravimetric analysis, the combustion of coal, dried sewage sludge, and SRF was characterized in this study. Dried sludge and SRF showed similar combustion behavior at all temperature increase rates of 5, 10, 25, 40, and 100oC/min. Coal burned at a higher temperature as the temperature rate increased. This may be ascribed to the much higher volatile matter contents of dried sludge and SRF comparative to coal.
In this study proximate analysis method was applied to food waste, mold, sewage sludge, PKS, PET in considering the characteristics of individual waste. It has been observed that this proximate analysis method based on the characteristics of individual waste required to dry the waste for more than 180 min, until the moisture contents reached the range of 105oC ~ 110oC and they reached the constant weight. Also it has been suggested that 7 min of ignition at 950oC for volatile matters and 120 ~ 180 min of ignition at max. 815oC for ash were recommended.