정확도 높고, 실용적으로 손쉽게 사용될 수 있는 온수양생 방법을 표준화하고 이를 통한 콘크리트 압축강도 예측방법을 제시하고자 변수 실험을 진행하였다. 전양생 시간, 온수양생 온도, 온수양생 시간에 대한 변수실험을 통해 18시간 전양생 시간, 70℃ 온수양생 온도, 24시간 온수양생시간의 온수양생시험 표준 조건을 제시하였다. 온수양생시험 표준 조건에 대한 추가적인 배합시험을 통해 콘크리트의 압축강도를 조기에 산정할 수 있는 선형 추정식을 산정하였고, 압축강도 추정식의 높은 신뢰도를 확인하였다. 또한, 혼화재 종류 및 혼화재 치환율 변수에 대한 온수양생시험을 통해 온수양생을 통한 콘크리트 압축강도 조기 추정방법은 시멘트 종류, 혼화재 종류 및 치환율, 골재의 종류가 동일한 배합에 대해서만 그 적용이 가능하다는 결론을 도출하였다.
In this study, expedite curing period at curing temperature being 40, 60, 80℃ similar to strength of standard 28days curing temperature to confirm methods and applicability of early estimation of strength by warm water curing. Also, checked the effect related to different conditions such as using various kinds of material, differentiating quantity of material, with or without fiber mixing at same rate of water-bonding material. Existing method proposed by KS and JIS to estimate strength of 28 days standard curing temperature curing for 7days at 40℃ is not relevant because it takes so long to estimate strength. Already known method of estimating strength of 28days standard curing temperature curing for 3days in 60℃ warm water, too, is not relevant to apply 3day cycle of super high-rise. It also had the problem which didn’t consider fiber mixed concrete. According to the result of experiment, traits and rate of strength revelation were different relating to the kinds and quantity of bonding material. Strength value of mix without fiber was higher than that of mix with fiber, but without any relation to that, over 96% of similar confidence level with strength of 28 days standard curing temperature was shown in 7 days at 40℃, 3 days at 60℃, 2days at 80℃. Confidence level of estimation method of 2 days at 80℃ was similar to those of estimation methods of 4 days at 40℃, 3 days at 60℃, so it(2 days at 80℃) is regarded as the most relevant method because it’s possible to estimate strength fastly. As a result it can be said that early quality control of recently increasing super high-rise may be possible through estimation method of 2 days at 80℃.
In this study, prediction of later-age compressive strength of ultra-high strength concrete, based on the accelerated strength of concrete cured in hot water was investigated. Comparing other acceleration method, hot water curing method is relatively easy and intuitive to use in the real construction site. The amount of time for evaluation of the concrete strength using the hot water curing method in KS and JIS is too long to predict the strength of the ultra-high strength concrete that are used in the tall building structure. For that reason, curing temperature of 40, 50, 60℃ 3 levels were examined to shorten the amount of time for the evaluation of the strength. When curing in warm water, different strength characteristics are verified from the experiment. In case of F3 substituting 30% fly ash in combination, because of the curing temperature sensitivity of fly ash, differences of strength expression velocity was verified according to the curing temperature at the same age. In case of B4 substituting 40% ground granulated blast furnace slag, there were no big strength expression velocity differences of the specimen cured in 3 different level of curing temperature(40, 50, 60℃). The results show reliable accuracy by regression relation between 28day strength cured by standard curing method and accelerated strength of concrete cured in warm water.(y=1x-0.0002 R2=0.9866) As a result, the feasibility of 3day-prediction was confirmed using warm water curing method with accelerated strength of concrete cured for three days in warm water.
In experimental results, the prediction equation for 28 day-strength of GGBF slag concrete could be produced through the linear regression analysis of early strength and 28 day-strength. In order to acquire the reliability, all mixture were repeated as 3 times and each mixture order was carried out by random sampling. The prediction equation for 28 day-strength of GGBF slag concrete by 1 day strength won the good reliability.