검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 6

        1.
        2022.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        목적 : 본 연구는 항균 기능을 갖춘 안경테의 필요성에 주목하여 고분자 물질인 Polyvinylpyrrolidone(PVP)을 사용하여 은 나노 입자를 합성하고, 금속 안경테 소재에 코팅하여 항균성과 코팅 특성을 평가해 보고자 한다. 방법 : 안정성이 높은 고분자 물질인 PVP를 환원제, 분산제, 안정제로 사용하고 합성 온도를 달리하여 은 나노 입자를 합성하였다. 합성한 시료의 특성은 UV-visible spectrophotometer, SEM, EDS를 사용하여 분석하였으 며 paper disk diffusion method로 항균성을 평가하였다. 합성한 은 나노콜로이드를 금속 안경테 소재인 티타 늄, 스테인리스스틸 기판에 코팅하고 코팅막의 특성과 항균성을 측정하였다. 결과 : PVP를 사용하여 합성한 시료 모두에서 은(Ag)이 검출되어 은 나노 입자의 생성을 확인할 수 있었다. 합성 온도에 따른 은 나노 입자의 크기는 차이를 보였으며 Escherichia coli, Pseudomonas aeruginosa, Aspergillus brasiliensis의 경우 45℃에서 합성한 은 나노콜로이드의 항균활성이 가장 크게 나타났다. 이를 금속 안경테 소재 기판에 코팅한 후 항균성을 확인한 결과 코팅막의 항균력을 확인할 수 있었다. 결론 : PVP를 사용하여 합성한 은 나노콜로이드를 금속 안경테 소재 기판에 코팅한 결과 코팅막의 항균성이 확인되어 항균 기능을 가진 안경테 제작 시 항균 물질로 활용될 수 있을 것이라 사료된다.
        4,500원
        2.
        2019.01 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        This study investigates Ag coated Cu2O nanoparticles that are produced with a changing molar ratio of Ag and Cu2O. The results of XRD analysis reveal that each nanoparticle has a diffraction pattern peculiar to Ag and Cu2O determination, and SEM image analysis confirms that Ag is partially coated on the surface of Cu2O nanoparticles. The conductive paste with Ag coated Cu2O nanoparticles approaches the specific resistance of 6.4 Ω·cm for silver paste(SP) as (Ag) /(Cu2O) the molar ratio increases. The paste(containing 70 % content and average a 100 nm particle size for the silver nanoparticles) for commercial use for mounting with a fine line width of 100 μm or less has a surface resistance of 5 to 20 μΩ·cm, while in this research an Ag coated Cu2O paste has a larger surface resistance, which is disadvantageous. Its performance deteriorates as a material required for application of a fine line width electrode for a touch panel. A touch panel module that utilizes a nano imprinting technique of 10 μm or less is expected to be used as an electrode material for electric and electronic parts where large precision(mounting with fine line width) is not required.
        4,000원
        3.
        2016.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Recent Engineered nanoparticles were increasingly exposed to environmental system with the wide application and production of nanomaterials, concerns are increasing about their environmental risk to soil and groundwater system. In order to assess the transport behavior of silver nanoparticles (AgNPs), a saturated packed column experiments were examined. Inductively coupled plasma-mass spectrometry and a DLS detector was used for concentration and size measurement of AgNPs. The column experiment results showed that solution chemistry had a considerable temporal deposition of AgNPs on the porous media of solid glass beads. In column experiment, comparable mobility improvement of AgNPs were observed by changing solution chemistry conditions from salts (in both NaCl and CaCl2 solutions) to DI conditions, but in much lower ionic strength (IS) with CaCl2. Additionally, the fitted parameters with two-site kinetic attachment model form the experimental breakthrough curves (BTCs) were associated that the retention rates of the AgNPs aggregates were enhanced with increasing IS under both NaCl and CaCl2 solutions.
        4,000원
        4.
        2015.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        In this study, the properties of Ag-coated TiO2 nanoparticles were observed, while varying the molar ratio of water and Ag+ for the surfactant and TiO2. According to the XRD results, each nanoparticle showed a distinctive diffraction pattern. The intensity of the respective peaks and the sizes of the nanoparticles increased in the order of AT1(R1 = 5)(33.3 nm), AT2 (R1 = 10)(38.1 nm), AT3(R1 = 20)(45.7 nm), AT4(R1 = 40)(48.6 nm) as well as AT5(R2 = 0.2, R3 = 0.5)(41.4 nm), AT6(R2 = 0.3, R3 = 1)(45.1 nm), AT7(R2 = 0.5, R3 = 1.5)(49.3 nm), AT8(R2 = 0.7, R3 = 2)(57.2 nm), which values were consistent with the results of the UV-Vis. spectrum. The surface resistance of the conductive pastes fabricated using the prepared Ag-coated TiO2 nanoparticles exhibited a range 7.0~9.0(274~328 μΩ/cm2) times that of pure silver paste(ATP)(52 μΩ/cm2).
        4,000원
        5.
        2011.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Ag spot-coated Cu nanopowders were synthesized by a hydrothermal-attachment method (HA) using oleic acid capped Ag hydrosol. Cu nano powders were synthesized by pulsed wire exploding method using 0.4 mm in diameter of Cu wire (purity 99.9%). Synthesized Cu nano powders are seen with comparatively spherical shape having range in 50 nm to 150 nm in diameter. The oleic acid capped Ag hydrosol was synthesized by the precipitation-redispersion method. Oleic acid capped Ag nano particles showed the narrow size distribution and their particle size were less than 20 nm in diameter. In the case of nano Ag-spot coated Cu powders, nanosized Ag particles were adhered in the copper surface by HAA method. The components of C, O and Ag were distributed on the surface of copper powder.
        4,000원
        6.
        2011.03 KCI 등재후보 구독 인증기관 무료, 개인회원 유료
        In this study, an enthalpy exchanger was coated by silver nano particles via spark discharge method and its antimicrobial and heat exchange efficiencies were evaluated. A method utilizing thermophoretic force was used to improve coating efficiency. Four spark discharge systems were parallel connected and generated silver nano aerosol particles (number concentration of 1.65×108 particles/cc, mode diameter of 31 nm). The coating efficiency was evaluated according to various face velocities (V=0.25~1 m/s) and temperature gradients ((Thot-Tcold)/Thot=0~0.09). The maximum coating efficiency was 90.8 % when the face velocity was 0.25 m/s and the temperature gradient was 0.09 (Thot=30℃, Tcold=2℃). Silver nano particles were coated onto the enthalpy exchange element and two different coating amounts of silver nano particles (0.11 ㎍/cm3 , 0.22 ㎍/cm3 ) were tested. For evaluation of antimicrobial efficiency, the suspension test method with E. coli was used. After the suspension test method, CFU(colony forming unit)s of each test sample were counted and colony ratio was calculated. The colony ratio was decreased more quickly when the amount of coated silver particles was increased. When the contact time between each sample and suspension was over 3 hours, antimicrobial efficiencies of coated samples were more over 99.9 % for both amount of silver nano particle(0.11 ㎍/cm3 , 0.22 ㎍/cm3 ). The coating of silver nano particles did not affect the heat exchange efficiency.
        4,600원