검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 9

        1.
        2015.02 서비스 종료(열람 제한)
        우리나라는 기후변화로 인해 강우의 변동성이 커지며 강우관측시스템이 지역적으로 불균형하고 시험유역을 제외한 대부분의 저수지 상류 유역이 미계측유역인 관계로 강우량, 유출량, 증발량 및 신뢰성 있는 관측 유입량이 절대적으로 부족하다. 이로 인해 유역의 특성을 반영한 강우-유출 관계를 유도하는데 문제점이 초래되고 있으며, 댐 및 저수지의 계획 및 설계 운영에 필요한 유입량 예측이 어려운 실정이다. 본 연구는 미계측유역 유입량의 정량적ㆍ정성적 분석방안을 수립하기 위해서 기존에 개발된 모형 IHACRES 모형, Sacramento 모형 및 Tank 모형을 이용하여 저수지의 유입량을 산정하고 각 모형의 매개변수를 지역화 하고자 한다. 지역화를 위해서 대상유역의 지형특성인자인 유역면적, 유로연장, 유역평균표고, 유역평균경사 및 단일형상계수와 회귀 분석하여 지역화시키고, 지역화를 통하여 산정된 매개변수를 각 모형에 적용하여 대상유역의 유입량을 재산정하여 처음에 산정한 유입량 값과 비교하여 각 모형의 지역화 가능성을 비교하였다.
        2.
        2013.08 KCI 등재 서비스 종료(열람 제한)
        Reliable long-term streamflow forecasting is invaluable for water resource planning and management which allocates water supply according to the demand of water users. It is necessary to get probabilistic forecasts to establish risk-based reservoir operation policies. Probabilistic forecasts may be useful for the users who assess and manage risks according to decision-making responding forecasting results. Probabilistic forecasting of seasonal inflow to Andong dam is performed and assessed using selected predictors from sea surface temperature and 500 hPa geopotential height data. Categorical probability forecast by Piechota's method and logistic regression analysis, and probability forecast by conditional probability density function are used to forecast seasonal inflow. Kernel density function is used in categorical probability forecast by Piechota's method and probability forecast by conditional probability density function. The results of categorical probability forecasts are assessed by Brier skill score. The assessment reveals that the categorical probability forecasts are better than the reference forecasts. The results of forecasts using conditional probability density function are assessed by qualitative approach and transformed categorical probability forecasts. The assessment of the forecasts which are transformed to categorical probability forecasts shows that the results of the forecasts by conditional probability density function are much better than those of the forecasts by Piechota's method and logistic regression analysis except for winter season data.
        3.
        2013.08 KCI 등재 서비스 종료(열람 제한)
        Reliable long-term streamflow forecasting is invaluable for water resource planning and management which allocates water supply according to the demand of water users. Forecasting of seasonal inflow to Andong dam is performed and assessed using statistical methods based on hydrometeorological data. Predictors which is used to forecast seasonal inflow to Andong dam are selected from southern oscillation index, sea surface temperature, and 500 hPa geopotential height data in northern hemisphere. Predictors are selected by the following procedure. Primary predictors sets are obtained, and then final predictors are determined from the sets. The primary predictor sets for each season are identified using cross correlation and mutual information. The final predictors are identified using partial cross correlation and partial mutual information. In each season, there are three selected predictors. The values are determined using bootstrapping technique considering a specific significance level for predictor selection. Seasonal inflow forecasting is performed by multiple linear regression analysis using the selected predictors for each season, and the results of forecast using cross validation are assessed. Multiple linear regression analysis is performed using SAS. The results of multiple linear regression analysis are assessed by mean squared error and mean absolute error. And contingency table is established and assessed by Heidke skill score. The assessment reveals that the forecasts by multiple linear regression analysis are better than the reference forecasts.
        4.
        2009.03 KCI 등재 서비스 종료(열람 제한)
        A accurate reservoir inflow is very important as providing information for decision making about the water balance and the flood control, as well as for dam safety. The methods to calculate the inflow were divided by the directed method to measure streamflow from upstream reservoirs and the indirected method to estimate using the correlation of reservoir water level and release. Currently, the inflow of multi-purpose dam is being calculated by the indirect method and the reservoir water level to calculate the storage capacity is being used by centimeters(cm) units. Corresponding to the storage volume of 1cm according to scale and water level of multi-purpose dam comes up to from several 10 thousand tons to several million tons. If it converts to inflow during 1 hour, and it comes to several hundred ㎥/sec(CMS). Therefore, the inflow calculated on the hourly is largely deviated along the water level changes and is occurred minus value as the case. In this research, the water level gage has been developed so that it can measure a accurate water level for the improvement for the error and derivation of inflow, even though there might be various hydrology and meteorologic considerations to analyse the water balance of reservoir. Also, it is confirmed that the error and the standard derivation of data observed by the new gage is decreased by 89,6% and 1/3 & 87% and 2/3 compared to that observed by the existing gage of Daecheong and Juam multi-purpose dam.
        5.
        2008.01 KCI 등재 서비스 종료(열람 제한)
        본 연구의 목적은 금강수계의 가장 효율적인 가중치를 찾을 수 있는 절차를 제시하는 것이다. 일반적으로 다목적 최적화 모형의 결과는 목적함수에 부여된 가중치에 크게 좌우되는 경향이 있다. 특히 다목적 저수지 운영 문제의 경우는 어떤 유입량 시나리오가 적용되느냐에 따라 그에 적합한 가중치가 크게 달라질 수 있다. 따라서 유입량의 변동성을 감안해서 저수지 운영자에게 적합한 초기 가중치를 적용하는 것은 매우 큰 의미가 있다. 이에 본 연구는 유입량의 불확실성을
        6.
        2003.04 KCI 등재 서비스 종료(열람 제한)
        본 연구에서는 낙동강 상류유역의 병렬 다목적댐군인 안동 및 임하다목적 댐의 장기간 유입량을 산정하는데 공간추계 신경망모형이 사용되었다. 공간추계 신경망모형은 역전파 알고리즘으로 LMBP와 BFGS-QNBP를 각각 사용하였다. 공간추계 신경망모형의 구조는 입력층, 은닉층 및 출력층의 3개의 층과 차례대로 8-8-2개의 노드로 구성되어 있다. 입력층 노드는 안동 및 임하다목적 댐의 월평균유입량, 월면적강우량, 월별 증발접시 증발량과 월평균기온으로 구성되어
        9.
        1998.02 KCI 등재 서비스 종료(열람 제한)
        본 논문의 목적은 다목적 저수지의 홍수유입량 예측을 위한 방법으로 병렬다중결선의 계층구조를 가진 신경망이론에 의하여 홍수시 불확실한 비선형시스템의 특성을 같는 저수지 유입량 예측모형을 개발하는 것이다. 신경망이론을 이용한 예측모형의 개발을 위하여 역전파 학습알고리즘을 사용하였으며 역전파 학습알고리즘 사용시 흔히 대두되는 지역최소값 문제와 수렴속도의 향상을 위해서 최적화기법인 경사하강법을 이용한 모멘트법과 경사하강법과 Gauss-Newton 방법을 이용한