검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 4

        1.
        2024.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this paper, the goal is to produce a target wheel that integrates the plate and CPS wheel among the components of the drive plate mounted on an automobile engine. We attempted to develop a manufacturing process technology for incremental forming of a target wheel with the desired thickness by rotating a disk-shaped thin plate material and deforming the plate using a forming device and tools. Incremental forming system was set up by establishing a forming process and designing and manufacturing the device and parts required for processing. It consists of a total of 4 stages of molding process, and the optimal roll design that can properly collect materials to prevent cracks or reverse steps at each stage is primarily important. After manufacturing the prototype, a material test was performed to confirm whether the mechanical properties of the deformed part were sufficient to make gear teeth.
        4,000원
        2.
        2016.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Incremental sheet forming (ISF) is a highly versatile and flexible process for rapid manufacturing of complex sheet metal parts. Compared to conventional sheet forming processes, ISF is of a clear advantage in manufacturing small batch or customized parts. ISF needs die-less machine alone, while conventional sheet forming requires highly expensive facilities like dies, molds, and presses. This equipment takes long time to get preparation for manufacturing. However, ISF does not need the full facilities nor much cost and time. Because of the facts, ISF is continuously being used for small batch or prototyping manufacturing in current industries.However, spring-back induced in the process of incremental forming becomes a critical drawback on precision manufacturing. Since sheet metal, being a raw material for ISF, has property to resilience, spring-back would come in the case.It is the research objective to investigate how geometrical shaping parameters make effect on shape dimensional errors. In order to analyze the spring-back occurred in the process, this study experimented on Al 1015 material in the ISF. The statistical tool employed experimental design with factors. The table of orthogonal arrays of L8 (27) are used to design the experiments and ANOVA method are employed to statistically analyze the collected data. The results of the analysis from this study shows that the type of shape and the slope of bottom are the significant, whereas the shape size, the shape height, and the side angle are not significant factors on dimensional errors. More error incurred on the pyramid than on the circular type in the experiments. The sloped bottom showed higher errors than the flat one.
        4,000원
        3.
        2015.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Incremental sheet metal forming is a manufacturing process to produce thin parts using sheet metals by a series of small incremental deformation. The process rarely needs dedicated dies and molds, thus, preparation time for the process is relatively short as to be compared to conventional metal forming. Spring back in sheet metal working is very common, which causes critical errors in dimensions. Incremental sheet metal forming is not fully investigated yet. Hence, incremental sheet metal forming frequently produces inaccurate parts. This paper proposes a method to minimize dimensional errors to improve shape accuracy of products manufactured by incremental forming. This study conducts experiments using an exclusive incremental forming machine and the material for these experiments are sheets of aluminum AL1015. This research defines a process parameter and selects a few factors for the experiments. The parameters employed in this paper are tool feed rate, tool diameter, step depth, material thickness, forming method, dies applied, and tool path method. In addition, their levels for each factor are determined. The plan of the experiments is designed using orthogonal array L8 (27) which requires minimum number of experiments. Based on the measurements, dimensional errors are collected both on the tool contacted surfaces and on the non-contacted surfaces. The distances between the formed surfaces and the CAD models are scanned and recorded using a commercial software product. These collected data are statistically analyzed and ANOVAs (analysis of variances) are drawn up. From the ANOVAs, this paper concludes that the process parameters of tool diameter, forming depth, and forming method are the significant factors to reduce the errors on the tool contacted surface. On the other hand, the experimental factors of forming method and dies applied are the significant factors on the non-contacted surface. However, the negative forming method always produces better accuracy than the positive forming method.
        4,000원