본 논문은 초탄성 형상기억합금의 복원성능에 의해 지속적으로 사용이 가능하고 마찰볼트 적용으로 에너지 소산 능력이 우수한 에너지 소산형 댐퍼를 제안하고 성능의 우수성을 입증하기 위해 구조용 탄소강이 적용된 댐퍼와 함께 해석을 통한 결과 비교 분석을 진행하였다. 해석결과에 대해 최대하중, 잔류변위, 에너지 소산등의 분석을 진행하여 초탄성 형상기억합금이 적용된 댐퍼의 우수성을 입증하였 으며, 해석 결과로 초탄성 형상기억합금이 적용됨에 따라 하중 성능과 잔류변위의 회복성능이 상당히 개선됨을 확인하였다. 최대하중의 경우 SSF댐퍼가 382.60kN으로 가장 우수하였으며 잔류변위의 경우 마찰볼트가 적용되지 않은 SS10, SS15가 0mm로 가장 우수한 회복거동을 보였다. 에너지소산의 경우 마찰볼트와 재료의 항복에 의한 연성효과가 우수한 CSF15가 가장 우수한 성능에 대한 거동 특성을 파악한다.
지진이란 지구 내부의 갑작스러운 에너지 방출로 땅이 흔들리는 자연재해의 일종으로 지표면에 살고 있는 사람들에 게 수많은 피해를 발생시킨다. 이에 따라 지진의 피해를 최소화하는 연구가 활발히 진행되고 있지만 지진 이후 발생한 구조물 의 잔류변형, 댐퍼와 구조물의 보수와 같은 문제는 피할 수 없다. 따라서 본 연구에서는 반영구적으로 사용이 가능한 초탄성 형 상기억합금을 댐퍼에 적용하고 제안한다. 본 연구의 에너지 소산형 댐퍼는 초탄성 형상기억합금과 더불어 마찰볼트가 추가됨으 로써 잔류변형은 적고 에너지 소산 및 하중 성능은 우수한 댐퍼이며 ABAQUS 프로그램을 활용한 유한요소해석을 진행하여 성 능을 입증한다. 재료의 차이, 마찰볼트의 유무, 핵심부재의 크기 차이를 설계 변수로 해석을 진행하여 도출된 힘-변위 거동응답 결과를 최대하중, 잔류변위, 에너지 소산 등의 성능에 대해 비교분석한다. 따라서, 연구 결과를 바탕으로 에너지소산형 댐퍼는 우수한 성능으로 안전한 사회기반을 조성하는 초석이 될 것으로 기대된다.
국내에서 공용중인 교량은 33,177개로 사회기반시설 중 가장 많은 비중을 차지한다. 이러한 교량은 공용하중, 온도, 습도 등에 의해 거더에 신축량이 발생하게 되고, 거더간 유간거리에 대한 안정성을 확보하기 위해 신축이음장치를 설치한다. 신 축이음장치에는 교량의 누수 및 퇴적물 낙하 등을 방지하기 위해 고무지수재를 설치하는 것이 일반적이다. 하지만 이러한 고무 지수재는 다양한 원인에 의해 쉽게 손상이 발생하게 된다. 손상된 고무지수재를 통해 거더의 부식, 교량하부 인명사고 등 다양 한 2차 피해가 발생할 수 있다. 이러한 피해를 예방하기 위해 교량의 유지관리를 수행하고 있지만 고무지수재 특성상 지속적인 교체는 불가피한 실정이다. 따라서 본 연구에서는 기존 신축이음장치에 활용되는 고무지수재의 문제점을 해결하기 위하여 초탄 성 형상기억합금을 활용한 새로운 지수재 개발 연구를 수행하였다. 초탄성 형상기억합금 지수재에 대한 유한요소해석을 수행 및 분석하였으며, 복원 효과를 통해 지속 사용 가능한 지수재 연구를 검증하였다.
과학과 기술의 발달로 복합재료, 합금, 고강도 탄소섬유, 고분자 재료 등 지능형 소재가 개발되고 있다. 다양한 엔지 니어링 분야에서 이러한 첨단 재료의 응용을 연구하기 위해 전 세계적으로 광범위한 연구가 진행되고 있다. 초탄성 형상기억합 금(SSMA)은 깃발 모양의 히스테리시스 거동을 가지며 추가적인 열처리 없이 응력 완화로 인한 잔류 변형이 거의 없는 신뢰성 이 높은 내진 재료이다. 그러나 공학 문제에서 SSMA 효율성을 연구하기 위한 수치 모델의 개발은 여전히 어려운 작업이다. 본 연구에서는 SSMA 인장시험의 실험결과를 통해 유한요소해석 프로그램인 Abaqus와 수치해석 프로그램인 OpenSEES를 이용하여 재료 모델을 구현한 후 해석결과의 거동 특성 및 에너지 소산을 분석하였다.
인류 문명은 재료의 발달과 함께 진화를 해왔으며 20세기 후반부터 등장한 스마트재료는 외부 환경에 맞춰 스스로 적응을 하는 재료이다. 많은 종류의 스마트재료 중 대표물질이라고 할 수 있는 형상기억합금은 온도에 반응하여 자가 치유효과 를 볼 수 있는 재료이다. 외부 하중에 의한 변형을 자가치유 효과를 사용하여 회복을 하고자 하는 연구는 계속되어 왔지만 온 도의 변화를 구조물 전체적으로 줘야한다는 많은 불편이 있었다. 따라서 본 연구에서는 이 효과를 증진하여 상온에서도 자가 치유효과를 할 수 있는 초탄성 형상기억합금을 이용한다. 구조물에 있어서의 초탄성 형상기억합금의 능력을 스테인리스강과 함 께 비교하고 비교를 위해 강재가 가장 변형되기 쉬운 형태인 와이어형태로 가공하여 다양한 인장실험을 진행한다. 인장실험의 종류는 총 3가지로 변위를 다르게, 인장속도를 다르게, 선 인장력을 다르게 하는 실험으로 진행된다. 이때의 응력, 변형률간의 그래프를 그리고 잔류변형, 재료의 항복점 및 회복, 에너지 소산과 같은 구조물에 있어서의 재료적 능력을 파악하고 따로 그래 프를 도식화 하여 해석하였다.
최근 우리나라는 대규모 지진이 빈번히 발생하고 있으며, 유감지진의 발생 규모 및 빈도가 급격히 증가하고 있어 지 진피해 저감 기술에 대한 관심이 증대되고 있다. 기존 지진피해 저감 기술은 구조물의 단면적을 크게하여 강성을 증가시키는 방법으로 과도한 설계 및 시공이 발생하여 상당한 비용이 소요되고 경제적인 측면에서 비효율적이다. 구조물에 대해 지진하중 으로부터 효율적으로 대응하기 위한 내진설계 방법에는 제진기술이 있다. 제진기술에 활용되는 제진장치는 지진 발생 후 재료의 항복으로 인해 장치의 손상 및 파괴가 발생하여 교체가 불가피하고 시간 및 비용이 소요된다. 따라서 이 연구에서는 기존 제진기술의 단점을 보완하기 위하여 에너지 소산 능력 및 복원력이 우수한 초탄성 형상기억합금 및 폴리우레탄 적용 자동복원 감쇠장치의 구조실험을 수행 및 분석하여 지진 발생 후 지속적으로 활용 가능한 댐퍼 장치에 대한 연구를 수행하였다.
우리나라는 지진에 대해 비교적 안전한 지역으로 인식되고 있었으나, 최근 경주지진과 포항지진이 발생하면서 시설물에 상당한 피해가 발생되면서 지진피해 저감장치를 적용한 내진설계 및 보강에 대한 연구와 개발이 수행되고 있다. 이미 건축된 구조물의 유지⋅보수에 대한 관심이 높아짐에 따라, 구조물의 감쇠, 강성 등을 국부적으로 변화시켜 지진 하중에 의한 에너지를 흡수하고 소산시키는 내진설계 방식인 제진기술이 활용되고 있다. 그러나 강한 지진이 발생할 때 제진 장치의 손상으로 인하여 사용성이 매우 떨어지게 되는 문제점이 발생되고 있다. 최근에는 이러한 문제를 해결하기 위해, 구조물의 가새 부재에 별도의 열처리를 하지 않고 응력 제거만으로 원형복원이 가능한 초탄성 형상기억합금을 적용하는 연구가 진행되고 있다. 따라서 본 연구에서는 비좌굴 가새 부재에 초탄성 형상기억합금을 사용하여 자동복원이 가능한 프레임 구조물을 구성하여 비선형 정적해석을 수행하여 구조물의 내진성능을 평가하고, 초탄성 형상기억합금의 재료적 특성의 우수성을 검증하고자 한다.
본 논문에서는 압입시험을 통해서 초탄성 재료 물성치를 평가하는 간단한 방법을 제시하였다. 초탄성 재료 모델 중, 3개의 물성치(C10, C20, C30)를 가지는 Yeoh 모델을 선택하여 주연신률로 표현되는 변형률 에너지 밀도를 적용하였다. Yeoh 물성치를 변화시키며, 구형 압입시험 유한요소해석을 수행하여 압입자 반력-변위 곡선을 획득하였다. 압입자 반력-변위 곡선을 3차 다항식으로 근사하였고, 이 다항식을 물성치(C10, C20, C30)의 3차 곱으로 근사된 3차 다항식으로 표현하였다. 압입자 반력-변위 곡선 근사를 위해 회귀분석을 진행하여 수식들의 계수를 결정하였으며, 이 회귀식을 이용하여 초탄성 재료의 물성치를 평가 하였다. 초탄성 재료 물성치 평가를 수행하고 오차를 비교하여 유효성을 보여 주었다.
우리나라는 지진으로부터 안전한 국가라는 인식이 형성되었으나 최근 경주와 포항 지진에 의해 발생된 구조물 피해로 구조물 안전성 확보를 위한 관심이 증가하고 있다. 국내 중저층 건축물에 다수 적용되고 있는 철골 모멘트 골조는 기본적인 내진성능을 보유하고 있지만 보-기둥 접합부의 소성변형으로 인한 취성파괴로 다양한 문제를 발생시킨다. 최근에는 이러한 문제를 해결하기 위해 구조물에 상온에서 잔류변형으로부터 원형복원이 가능한 초탄성 형상기억합금의 활용에 관한 연구가 진행되고 있다. 따라서 본 연구에서는 소성변형이 집중되는 보 플랜지 부재에 초탄성 형상기억합금 보강판을 활용한 보–기둥 접합부에 대하여 실험을 통한 실질적인 내진성능을 평가하고자 한다.
니티놀이라고 하는 니켈-티타늄 형태의 형상기억 합금(SMA)은 상당한 양의 변형이 발생한 후에 추가적인 열을 가하지 않더라도 상온에서 원래 모양으로 복원될 수 있는 초탄성 효과를 가진다. 이러한 독특한 재료 특성 때문에, 니티놀은은 의료, 전기, 전자 및 기계 분야뿐만 아니라 토목 공학 분야의 내진 개량을 위한 변위 제어 장치로 널리 사용되어 왔다. 탄소강과 달리 초탄성 형상기억합금은 피로 저항성이 강하며 하중 속도에 따라 강성(하중-변위특성)등의 기계적 물성치가 변화한다. 본 연구에서는 하중 사이클의 반복 횟수와 속도에 따라 초탄성 형상기억합금의 기계적 물성치가 어떻게 변하는가에 대한 실험적 연구를 수행하였다. 본 연구로 인해 표준화된 초탄성 형상기억합금의 기계적 물성치는 이후 초탄성 형상기억합금을 적용한 내진 장치의 설계과정에서 활용함으로써 설계 효율성을 높일 수 있을 것으로 기대된다.
In this paper a systematic numerical analysis is performed to obtain the energy dissipation and re-centering capacities of diagonal steel braced frames subjected to cyclic loading. This diagonal steel bracing systems are fabricated with super-elastic SMA (Shape Memory Alloy) braces in order to develop a recentering seismic resistance system without residual deformation. The three-dimensional nonlinear finite element models are constructed to investigate the horizontal stiffness, drifts and failure modes of the re-centering bracing systems.
A level set based topological shape optimization method for nonlinear structure considering hyper-elastic problems is developed. To relieve significant convergence difficulty in topology optimization of nonlinear structure due to inaccurate tangent stiffness which comes from material penalization of whole domain, explicit boundary for exact tangent stiffness is used by taking advantage of level set function for arbitrary boundary shape. For given arbitrary boundary which is represented by level set function, a Delaunay triangulation scheme is used for current structure discretization instead of using implicit fixed grid. The required velocity field in the actual domain to update the level set equation is determined from the descent direction of Lagrangian derived from optimality conditions. The velocity field outside the actual domain is determined through a velocity extension scheme based on the method suggested by Adalsteinsson and Sethian(1999). The topological derivatives are incorporated into the level set based framework to enable to create holes whenever and wherever necessary during the optimization.
The researches related to active control systems utilizing superelastic shape memory alloys (SMA) have been recently conducted to reduce critical damage due to lateral deformation after severe earthquakes. Although Superelastic SMAs undergo considerable inelastic deformation, they can return to original conditions without heat treatment only after stress removal. We can expect the mitigation of residual deformation owing to inherent recentering characteristics when these smart materials are installed at the part where large deformation is likely to occur. Therefore, the primary purpose of this research is to develop concentrically braced frames (CBFs) with superelastic SMA bracing systems and to evaluate the seismic performance of such frame structures. In order to investigate the inter-story drift response of CBF structures, 3- and 6-story buildings were design according to current design specifications, and then nonlinear time-history analyses were performed on numerical 2D frame models. Based on the numerical analysis results, it can be comparatively verified that the CBFs with superelastic SMA bracing systems have more structural advantages in terms of energy dissipation and recentering behavior than those with conventional steel bracing systems.
충남 일원에 분포하는 초염기성 암석과 이에 수반되는 각섬암, 편암, 편마암에 대해 탄성파 및 밀도가 실험실에서 측정되었다. 밀도측정 결과 사문암은 2.6∼2.86g/cm3, 활석은 2.25∼2.81g/cm3, 변성암류는 2.74∼3.07g/cm3의 범위를 갖는다. 이 결과 활석은 사문암으로부터의 변성과정으로 사문암 및 각섬암보다 넓은 범위를 보였다. P파와 S파의 속도는 사문암에서 각각 5719∼6062m/s, 2898∼3351m/s 이고, 활석에서 4019∼5478m/s, 2241/∼2976m/s, 각섬암에서 5375∼6372m/s, 3042∼3625m/s, 편암에서 5290∼5499m/s, 2968∼3137m/s, 편마암에서 4788m/s, 2804m/s를 보였다. P파의 속도는 밀도가 증가함에 따라 S파의 속도보다 1.47배 빠르게 증가하였다. 탄성파 속도와 밀도 사이에 비례관계가 성립하며, 특히 밀도에 따른 P파 속도 증가율이 S파 속도증가율보다 약 1.47배 크게 나타났다. 탄성파속도의 이방분석결과 편리와 직각 방향의 속도값이 평행방향의 값보다 높았는데, 특히 변성암이 더 큰 차이를 보이는바, 이는 변성암의 형성이 지체구조성 압력의 영향으로 인한 광역변성작용에 의한 것임을 시사한다. 압력의 변화에 따른 탄성파속도 변화분석 결과 대체로 압력이 20 MPa에서 70 MPa로 증가함에 따라 변성암의 탄성파속도 증가가 다른 암석에 비하여 크게 나타났다. 재계산된 탄성파속도는 각섬암이 이 지역 하부 지각에 대한 탄성파 특성을, 편마암류 및 편암은 상부지각 암석의 탄성파 특성을 지시한다고 생각된다. 한편 사문암의 측정치는 높은 사문암화 정도를 반영하기는 하지만 상부 맨틀의 암석에 대한 탄성파의 특성을 지시한다 볼 수 있다.