The number of significant issues on many welding processes are often connected to high productivity and manufacturability at low costs. The research on welding processes in the literature has reported several research activities, but there is still scope for improvement in most industrial settings. The primary goal of this research is to determine the best super-TIG welding settings to use for groove welding. First, in order to determine the quality characteristics and risks associated with them, concepts and frameworks of quality by design (QbD) which is a new standard in pharmaceutical area in order to improve drug qualities were integrated into this process optimization. Second, stepwise experimental design approaches including a factorial design as well as a response surface methodology (RSM) were customized and performed for this specific automated super-TIG welding process. Third, based on experimental design results, the optimal operating conditions with both design space (i.e., acceptable range of operating conditions) and safe operating space (i.e., safe range of operating conditions) were obtained. Finally, a case study including QbD steps, stepwise experimental design approaches, design and operating spaces, the optimal factor settings, and their association validation results was conducted for verification purposes.
도라지는 한국, 중국 그리고 일본에서 주로 재배되는 약용 작물이다. 도라지의 뿌리는 사포닌의 함량이 높고 기관지 보 호에 효과가 좋아 약재로 이용이 많이 될 뿐만 아니라 가공식 품, 화장품의 원료로 많이 이용되고 있다. 하지만 도라지의 대 량 생산을 위한 폐쇄형 식물 생산 시스템 내 적정 광 환경에 대 한 기초 데이터가 전무한 실정이다. 본 연구는 도라지의 광도 와 광주기를 구명하기 위해 수행되었다. 도라지는 온도 24.9 ± 0.9℃, 상대습도 53.7 ± 10.9%의 폐쇄형 식물 생산 시스템에 서 48일간 육묘하였다. 광도는 100, 150 및 200 ± 10μmol·m-2·s-1 그리고 광주기는 10/14, 12/12, 14/10h(명기/암기)로 처리하 였다. 가장 높은 광도인 200μmol·m-2·s-1에서 지상부 생육이 가장 우수하였고 12/12와 14/10h 사이에는 유의적인 차이가 나타나지 않았다. 200μmol·m-2·s-1에서 광주기 12/12h의 절 간장은 14/10h보다 유의적으로 짧았다. 200μmol·m-2·s-1에 서 지하부 생육의 경우 광주기 12/12h보다 14/10h의 생육이 우수하였다. 결론적으로, 200μmol·m-2·s-1, 12/12h는 도라지 공정 육묘의 광 환경으로 적합할 것으로 판단된다.
The demand for automated diagnostic facilities has increased due to the rise in high-risk infectious diseases. However, small and medium-sized centers struggle to implement full automation because of limited resources. An integrated molecular diagnostics automation system addresses this issue by integrating small-scale automated facilities for each diagnostic process. Nonetheless, determining the optimal number of facilities and human resources remains challenging. This study proposes a methodology combining discrete event simulation and a genetic algorithm to optimize job-shop facility layout in the integrated molecular diagnostics automation system. A discrete event simulation model incorporates the number of facilities, processing times, and batch sizes for each step of the molecular diagnostics process. Genetic algorithm operations, such as tournament, crossover, and mutation, are applied to derive the optimal strategy for facility layout. The proposed methodology derives optimal facility layouts for various scenarios, minimizing costs while achieving the target production volume. This methodology can serve as a decision support tool when introducing job-shop production in the integrated molecular diagnostics automation system
Wastewater management is increasingly emphasizing economic and environmental sustainability. Traditional methods in sewage treatment plants have significant implications for the environment and the economy due to power and chemical consumption, and sludge generation. To address these challenges, a study was conducted to develop the Intermittent Cycle Extended Aeration System (ICEAS). This approach was implemented as the primary technique in a full-scale wastewater treatment facility, utilizing key operational factors within the standard Sequencing Batch Reactor (SBR) process. The optimal operational approach, identified in this study, was put into practice at the research facility from January 2020 to December 2022. By implementing management strategies within the biological reactor, it was shown that maintaining and reducing chemical quantities, sludge generation, power consumption, and related costs could yield economic benefits. Moreover, adapting operations to influent characteristics and seasonal conditions allowed for efficient blower operation, reducing unnecessary electricity consumption and ensuring proper dissolved oxygen levels. Despite annual increases in influent flow rate and concentration, this study demonstrated the ability to maintain and reduce sludge production, electricity consumption, and chemical usage. Additionally, systematic responses to emergencies and abnormal situations significantly contributed to economic, technical, and environmental benefits.
본 연구에서는 중공사형 이산화탄소 분리막 모듈을 사용하여 수소개질기 배가스로부터 이산화탄소 포집을 목적 으로 한 분리막 공정 최적화 연구를 진행하였다. 랩스케일의 소형 분리막 모듈을 사용하여 혼합기체를 대상으로 이산화탄소 순도 90% 및 회수율 90%을 달성하는 2단 공정 조건을 도출하였다. 막 면적이 정해진 모듈의 분리막 공정에서는 스테이지-컷, 주입부 및 투과부 압력에 따라서 포집 순도 및 회수율이 모두 다르게 나타나기 때문에 운전 조건에 대한 최적화가 필수적이 다. 본 연구에서는 다양한 운전 조건에서 1단 분리막에서 보이는 공정 포집 효율의 한계를 확인하고, 높은 순도와 회수율을 동시에 달성하기 위한 2단 회수 공정을 최적화하였다.
본 연구에서는 공정 간소화, 균일한 나노 입자 형성, 백금 저감 및 활용도를 높이기 위하여 원자층 증착법 (Atomic Layer Deposition, ALD)을 통하여 양이온 교환막 연료전지용 촉매를 제조하고 증착 온도에 따른 백금 입자 형성 거동 을 확인하였다. 증착 온도는 250 °C, 300 °C, 350 °C로 조절하여 백금 촉매를 형성하였으며 각 각의 촉매의 증착 양 상을 확인하기 위하여 Thermogravimetric analysis, X-ray diffraction 및 Transmission electron microscopy를 도입하여 담지량, 백금 입자 분포, 크기 및 결정구조 등을 확인하였다. 합성된 백금 촉매를 연료전지에 적용하기 위해서 Cyclic Voltammetry 기법을 통해서 전기화학적 활성 표면적를 구하고, Membrane Electrode Assembly 셀을 제작하여 전지 특성을 확보하였다. 최종적으로, 백금 촉매 제조 시 ALD 증착 온도는 300 °C 이하에서 합성해야 됨을 밝혀냈으며, ALD으로 제작된 백금 촉매가 기존 습식 촉매보다 더 우수한 특성을 보임을 확인하였다. 해당 연구는 ALD을 통하여 다양한 접근법으로 촉매를 제조할 시, 기본적인 ALD 공정 정보 및 ALD 촉매 합성 방향성을 제공할 수 있다.