Effective mixing of different-sized aggregates in mobile asphalt plant dryers is crucial for ensuring high-quality, consistent asphalt production. This study explores the application of spatial analysis techniques, particularly the Discrete Element Method (DEM), to understand and optimize the mixing process of aggregates in drum dryers. The research emphasizes the importance of proper mixing to achieve uniform moisture removal and heating across various aggregate sizes. Larger aggregates heat more slowly, while finer particles risk overheating or being carried away by air currents, necessitating careful management of the mixing process. Using LIGGGHTS, an open-source simulation framework, we conducted DEM simulations to analyze the spatial distribution and behavior of aggregates within a 3D model of a drum dryer. The study considered multiple factors affecting mixing efficiency, including drum inclination, rotational speed, and aggregate feeding frequency. Results indicate that the rotational speed of the drum dryer has the most significant impact on mixing effectiveness. The DEM simulations provided valuable insights into particle movement, heat transfer, and potential segregation issues within the dryer. Further investigations into additional factors that may influence aggregate mixing in drum dryers is recommended, paving the way for improved efficiency and quality in asphalt manufacturing.
Melon fruits exhibit a wide range of morphological variations in fruit shape, sugar content, net quality, diameter and weight, which are largely dependent on the variety. These characteristics significantly affect marketability. For netted varieties, the uniformity and pattern of the net serve as key factors in determining the external quality of the melon and act as indicators of its internal quality. In this study, we evaluated the effect of fruit morphology and growth on netting by analyzing the changes in melon fruit quality under LED light treatment and monitoring fruit growth. Computer vision analysis was used for quantitative evaluation of fruit net quality, and a three-variable logistic model was applied to simulate fruit growth. The results showed that melons grown under LED conditions exhibited more uniform fruit shape and improvements in both net quality and sugar content compared to the control group. The results of the logistic model showed minimal error values and consistent curve slopes across treatments, confirming its ability to accurately predict fruit growth patterns under varying light conditions. This study provides an understanding of the effects of fruit shape and growth on net quality.
Combining digital automation solutions throughout recent manufacturing process is essential. Advanced robot and mechanical techniques are required for design, manufacture, and distribution process. Manual design of repetitive similar mechanical components during the development phase of these advanced machines and robots can occur wasting time and money. Developed gear design module, which is the power transfer system mechanical component, was programmed in the Visual Basic language in CATIA V5 environment. Automation Process is Based on Parametric Modeling Method. and it was found to be effective in reducing design time compared to designers manual modeling.
This paper develops a LED fishing lamp mounting system which slides in and out a LED fishing lamp mounting rack according to fishing situation of a fishing boat. Sliding mechanism of the LED fishing lamp mounting system is realized with a rack and pinion. Components of the LED fishing lamp mounting system are modeled with finite elements. In addition, the LED fishing lamp mounting system is modeled with rigid bodies. A rigid body model of the LED fishing lamp mounting system is interfaced with finite element component models to develop a computational model of the LED fishing lamp mounting system. A simulation is performed with the developed computational model for dynamic stress analysis of the LED fishing lamp mounting system. A bouncing, rolling, and pitching motion which describe a very rough sea are used as input conditions for the simulation. Six cases are considered for the simulation based on the number of fishing lamp and the location of sliding rack.
We developed a 3D simulation model of microstructure evolution of vertically aligned porous structure due to phase separation during film growth. The model proves its validity by reproducing the results of previous researches which are topological features of the microstructures and effects of varied processing parameters. The model will be extended by including bulk diffusion effect and elastic effect.
This computer simulation is the basic research for realize a real-time hardware of the reproduction system in original sound field with two loudspeakers based on the OSS(Ortho Stereophonic System) method which was proposed by Hamada of Japan in 1983. Through the computer simulation, presumed the system function of OSS equalizer using HRTF(Head Related Transfer Function), constructed the model of OSS equalizer and , evaluated the modelling OSS equalizer by evaluation formula. The obtained results are summarized as follows : 1) By the modelling OSS equalize operate as inverse filter of HRTF, an input signal reproduced effectively. 2) Known that the real-time hardware of OSS equalizer can be made by the fast convolution between the impulse response of OSS equalizer and input speech signal. 3) Since the system function of OSS equalizer presumed from HRTF, the study on the measuring of HRTF have to proceed.