검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 6

        3.
        2020.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : This paper presents the experimental results of tests conducted on concrete produced with air-cooled (AS) and water-cooled (WS) ground blast-furnace slag exposed to multi-deterioration environments of carbonation and scaling. METHODS : Carbonated and uncarbonated concrete specimens were regularly monitored according to the ASTM C 672 standard to evaluate the durability of concrete exposed to both scaling and combined carbonation and scaling conditions. Additionally, mechanical properties, such as compressive strength, flexural strength, and surface electric resistivity, were analyzed. RESULTS : It was found that concrete specimens produced with AS and WS had a beneficial effect on the mechanical properties because of the latent hydraulic properties of the AS and WS mineral admixtures. Moreover, carbonated concrete showed good scaling resistance in comparison to uncarbonated concrete, particularly for concrete produced with AS and WS. CONCLUSIONS : The improved scaling resistance of carbonated concrete showed that AS is a suitable option for binders used in cement concrete pavements subjected to combined carbonation and scaling.
        4,000원
        4.
        2020.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : Concrete pavement is excellent in structural performance and durability. However, its functionality – such as noise and skid resistance – is a shortcoming. Functionality such as noise reduction and skid resistance of concrete pavement is affected by the texture surface, and the texture surface is classified according to the length of the wavelength. In recent years, Fine-size exposed aggregate concrete pavement has been applied, which has excellent structural performance and durability, and secures functionalities such as noise reduction and long-term skid resistance by randomly forming texture surface. Fine-size exposed aggregate concrete pavements are constructed by removing the surface cement binder to randomly expose coarse aggregate and their functionality is mainly governed by the surface texture. However, deteriorated concrete by tire-pavement friction and deicing agent may cause abrasion and aggregate loss on the surface texture; thus reducing their functional performances. Abrasion is created by the thin cutoff of aggregate texture under repeated tire-pavement friction. In addition, aggregate loss is defined by the detachment of aggregates from cement binder. This study aims to evaluate the abrasion and aggregate loss of Fine-size exposed aggregate concrete pavement surface texture under tire-pavement friction and scaling tests. METHODS : In the study, abrasion and aggregate loss of tining and exposed aggregate concrete surface treatments were evaluated. Deterioration of each surface treatment was replicated by scaling test under ASTM C 672 test method. Afterward, abrasion test was conducted by ASTM C779 to simulate the tire-pavement friction under traffic. Consequently, abrasion and aggregate loss were measured. RESULTS : Abrasion depth of non-scaling tining, 10-mm EACP, and 8-mm EACP was 1.76, 1.12, and 1.01mm, respectively. Compared to scaling surface treatments, the difference of abrasion depth in tining texture was the largest with value of 0.4mm. For both textures of finesize exposed aggregate concrete, abrasion depth difference was about 0.1mm. Moreover, The 10-mm EACP exhibited a 2.6% of aggregate loss rate caused by tire-pavement friction before conducting concrete deterioration test. After 40-cycle scaling test, aggregate loss increased up to 12.2%. For 8-mm EACP, aggregate loss rate was 1.7% on non-scaling concrete. Further, this rate was magnified up to 7.3% for the 40-cycle scaling concrete. CONCLUSIONS : Under non-scaling or scaling tests, fine-size exposed aggregate concrete pavement showed better abrasion resistance than tining texture since tining was formed by aggregates and cement binder. Additionally, rate of aggregate loss was significant when EACP experienced the deicing agent under numerous cycles of freeze-thaw action.
        4,000원