PURPOSES : The purpose of this study was to evaluate the common performance of asphalt pavements, determine the timing of preventive maintenance, and determine the optimal timing of application of the preventive maintenance methods by analyzing PMS data. METHODS : Using PMS data on asphalt pavement performance on highways, we derived the major damage factors and evaluated them according to the public period and traffic level. Among the factors evaluated, we determined those that could be improved by preventive maintenance, calculated the amount of change annually, and derived the timing of the application of the preventive maintenance method through correlation analysis. RESULTS : Among highway PMS data factors, crack variation was found to affect preventive maintenance, which increased rapidly after five years of performance. Traffic analysis showed that changes increased rapidly in the fifth, sixth, and seventh years when AADT exceeded 20,000, exceeded 10,000, and was under 10,000, respectively. Analysis of the amount of crack variation according to the pavement type showed that crack variation increased rapidly in the overlay section compared to the general AP section. CONCLUSIONS : Crack variation is the performance factor that was expected to be effective in preventive maintenance, and the PMS data showed that the initial application time of the preventive maintenance method varied by one year, depending on the traffic volume.
PURPOSES : Previously, the expansion state of the concrete pavement in which AAR occurred could not be determined. Because the current situation has not been evaluated, it has been difficult to prepare an appropriate response. In this study, a method for calculating the expansion amount of concrete pavement using the stiffness damage test (SDT) is proposed. METHODS : The SDT method was examined through a literature review. For the laboratory tests, specimens that generated AAR were produced based on the mix design (2018) of the Korea Expressway Corporation. SDT was used to calculate various mechanical properties, and their correlation with the expansion amount was reviewed. RESULTS : Using the SDT, various mechanical properties(elastic modulus, hysteresis area, plastic deformation, plastic deformation index, stiffness damage index, and nonlinear index) were calculated based on the expansion rate of the AAR. The elastic modulus was evaluated as the best predictor of the expansion rate. Thus, if the elastic modulus is calculated using SDT, a prediction equation can be used to calculate the amount of AAR expansion. This equation will need to be supplemented by further research. CONCLUSIONS : SDT was used to confirm that the expansion state due to the AAR of the concrete pavement could be indirectly evaluated. Among the mechanical properties related to SDT, the elastic modulus was found to be the most suitable for predicting the amount of expansion.
PURPOSES : In this study, a driving simulation testing equipment was developed to derive the optimal longitudinal tinting that can reduce the lateral vibration of the vehicle. Various types of longitudinal textures and tires were evaluated through simulation testing with the equipment. Based on the results, 3×3×16mm tinning as the optimal longitudinal texture was selected among 8 textures.
METHODS : Based on the literature review, the causes of lateral vibration were analyzed, and parts and types for testing equipment development were reviewed. Driving simulation with testing equipment was conducted considering various textures and tires. To verify the test results, finite element analysis was performed under the similar conditions. And field test for two textures was conducted to find the optimal longitudinal texture.
RESULTS : Based on the literature review, driving simulation test, finite element analysis and field test, longitudinal texture of 3×3×16mm is show the better performance compared to 7 textures. CONCLUSIONS : 3×3×16mm as longitudinal tinning for fresh concrete is show less lateral vibration than 3×3×12mm.