검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 7

        1.
        2024.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : The tire-pavement interaction noise (TPIN) comprises four sources, among which the tire tread vibration noise (TTVN) and air pumping noise (APN) are known to be the most influential. However, when evaluating TPIN, the noise level is estimated based on the overall noise, because general noise measurement methods cannot separate TTVN and APN. Therefore, this study aims to develop a method to separate TTVN and APN in TPIN for quantitative assessment of pavement noise. METHODS : Based on the results of our literature review and frequency band noise data measured in our study, we identified the dominant frequency ranges for TTVN and APN. Additionally, we evaluated TTVN and APN across various pavement types. RESULTS : TTVN was found to be dominant in frequency bands below 800 Hz, while APN was dominant in frequency bands above 800 Hz. Additionally, regardless of the vehicle type, vehicle speed, or pavement type, APN exhibited higher levels compared to TTVN. This result shows that APN has a more significant impact on TPIN than TTVN. CONCLUSIONS : The separation method of TTVN and APN proposed in this study can be utilized to quantitatively assess the relationship between the primary noise sources in TPIN and the characteristics of pavement texture in future research. Furthermore, it is anticipated that characteristics of low TPIN and optimal texture conditions can be proposed to mitigate TPIN, thus contributing to the development of lownoise pavements.
        4,000원
        2.
        2021.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        A theoretical model has been studied to describe the sound radiation analysis for structure vibration noise of tire under the action of random moving line forces. When a tire is analyzed, it had been modeled as curved beams with distributed springs and dashpots that represent the radial, tangential stiffness and damping of tire, respectively. The reaction due to fluid loading on the vibratory response of the curved beam is taken into account. The curved beam is assumed to occupy the plane y=0 and to be axially infinite. The curved beam material and elastic foundation are assumed to be lossless Bernoulli-Euler beam theory including a tension force(T), damping coefficient (C) and stiffness of foundation(κ2) will be employed. The expression for sound power is integrated numerically and the results examined as a function of Mach number(M), wave-number ratio(γ) and stiffness factor(ψ). The experimental investigation for structure vibration noise of vehicle tire under the action of random moving line forces has been made. Based on the STSF(Spatial Transformation of Sound Field) techniques, the sound power and sound radiation are measured. Results strongly suggest that operation condition in the tire material properties and design factors of the tire govern the sound power and sound radiation characteristics.
        4,000원
        5.
        2015.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The tires changes characteristics of the element constituting change. Stiffness is one of the various characteristics of the tire. Stiffness of the tire is change contact contour. it is known to affect vibration and noise of the vehicle. In this study we conduct to find influence of change stiffness of the tire due to vibration characteristics inside passenger car. For this study we choose tires of available on the market and measure vertical spring rate and lateral spring rate. Also through the real passenger car we find vibration characteristics in the inside of car. In conclusion, vibration energy is reducing with increase in the stiffness and we find the high vibration level of low frequency band in passenger car due to decreasing stiffness.
        4,000원
        7.
        2014.02 구독 인증기관·개인회원 무료
        The present authors recently gave an analytical method for estimating three spring constants Kr, Ks, and Kt, for sidewall stiffnesses of radial tires. These represent the radial, lateral, and in-plane rotational directions respectively. The method is based on netting theory with special consideration to stiffness of the rubber matrices in the sidewall These theoretical results were verified by experiment to have sufficient accuracy. In order to confirm the availability of these spring constants, the twisting stiffness Rt of a radial tire has been analyzed in the present paper by using a spring-supported ring model. An explicit formula for Rt, expressed in terms of the three components of the spring constant, was obtained. Experiments were conducted on a 175SR14 radial tire by increasing the inflation pressure while keeping the tread circumference constant. The theoretical results agreed well with the experimental results. A related problem is also referred to; this is the forced lateral vibration with fundamental eigen-modes of the inflated sidewall-rim system when the tread is fixed. Eigen-frequencies calculated by using those spring constants coincide well with the experimental results.