검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 6

        1.
        2001.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        일반적으로 지하수환경은 세균의 수가 적기 때문에 세균의 핵산을 추출하기 위해서는 지하수 시료의 여과를 통하여 대량의 세균을 획득하는 것이 우선적으로 요구되어왔다. 그러나 이러한 여과법은 많은 시간과 인력의 낭비 뿐만 아니라 실험 과정의 특수성으로 인하여 오염의 위험성이 높다. 따라서 본 논문에서는 구아니딘 열탕법을 이용하여 소량의 지하수 시료로부터 핵산증폭실험에 적용할 수 있는 충분한 양의 핵산의 추출을 시도하였다. 지하수 시료는 서울시 내의 질소화합물
        3,000원
        2.
        1995.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        4,000원
        5.
        1999.02 KCI 등재 서비스 종료(열람 제한)
        A new biological nutrient removal system combining A2/O process with fixed film was developed in this work and the characteristics of denitrifcation were especially investigated in the combined fixed film reactor(CFFR). Media was added in the anaerobic, anoxic and aerobic reactors, respectively. Tests were made to establish the effluent level of NOx-N, COD, DO and nitrite effects on NOx-N removal in the CFFR by decreasing hydraulic retention time (HRT) from 10.0 to 3.5 hours and by increasing internal recycle ratio form 0% to 200%. The influent was synthesized to levels similar to the average influent of municipal wastewater treatment plants in Korea. SARAN media with a porosity of 96.3% was packed 40%/30%/25% based on its reactor volume, respectively. It was found that COD rarely limited denitrification in the anoxic reactor because of high C/NOx-N ratio in the anoxic reactor, while DO concentration in the anoxic reactor and NO2-N/NOx-N from the aerobic effluent inhibited denitrifcation in the anoxic reactor. It was proved that the critical points of DO concentration in the anoxic reactor and NO2-N/NOx-N from the aerobic effluent were 0.15㎎/L and 10%, respectively. As the internal recycle ratio increased, DO concentration in the anoxic reactor and NO2-N/NOx-N from the aerobic effluent increased. Especially, at the condition of internal recycle ratio, 200%, DO concentration in the anoxic reactor and NO2-N/NOx-N from the aerobic effluent exceeded the critical points of 0.15㎎/L and 10%, respectively. Then, denitrification efficiency considerably decreased. Consequently, it was represented that the control of DO concentration in the anoxic reactor and NO2-N/NOx-N from the aerobic effluent can assure effective denitrifcation.
        6.
        1998.08 KCI 등재 서비스 종료(열람 제한)
        An experimental study was conducted to indentify the direct denitrification of ammonium nitrogen in culture water by ozone. During the experimnet period, pH was 7.8-8.8. pH was grdually lower after ammonium nitrogen was reacted with ozone under Br^-. In addition, it can be known that the culturing water was improved greatly form the inverstigation of T-N by biofilm and ozonation. As the results of a variation of recirculation rate, denitrification of ammonium nitrogen was in increased in proportion to the recirculation rate. But Nitrification of microorganism was opposite to the recirculation rate. With the increasing injected ozone in ozonation tank uner 21 circulation /day(6.7 ℓ/min), dinitrification of ammonium nitrogen was increased lineraly in propotion to the increasing of injected ozone concentration.