본 연구는 신호교차로 교통사고예측모형 구축 과정 중 일반적으로 제한된 변수의 선정 및 모형의 구축에만 주로 초점이 맞추어진 기존 방법론의 문제점을 개선하고, 자료조사 및 수집 과정에서 발생하는 자료의 불확실한 상태를 인정하면서 자료의 불확실성을 최소화하여 이용할 수 있는 방법론을 개발하는데 연구의 주안점을 두었다. 퍼지추론이론과 신경망이론을 이용한 모형을 구축하였고, 마지막으로 구축된 퍼지추론이론 모형 및 신경망이론 모형과 기존 회귀모형인 포아송 회귀모형간의 통계적인 검증과 실제 Data를 이용한 모형의 적정성을 검토하였다. 모형의 통계적인 검증시 기존모형에 비해 퍼지추론모형과 신경망이론모형이 더 설명력이 높은 것으로 나타났고, 검증에서도 퍼지추론이론과 신경망이론이 적절한 것으로 나타났으며 기존모형보다 사고건수를 예측하는 설명력이 높은 것으로 입증되었다. 본 연구에서 개발된 모형은 계획 및 운영단계에서 신호교차로의 안전성을 측정하는데 활용될 수 있으며, 궁극적으로는 신호교차로에서 교통사고를 줄이는데 기여할 수 있을 것으로 판단된다.
이 논문에서는 모바일 통신망에서 호 손실율의 가능성 분포에 기초하여 최대 손실률을 추정하는 방법을 제안한다. 호 손실률 가능성 분포는 관측된 호 손실률을 이용하여 퍼지추론으로 추정한다. 퍼지규칙의 소속 함수는 신경망의 EBP(error backpropagation ) 알고리즘으로 튜닝하고, 퍼지추론은 퍼지집합의 가중치 평균에 기초하여 호 손실율의 상한계를 추정한다. 이 방법은 과도한 CDR(Call Dropping Ratio)의 추정을 방지할 수 있고, 추정된 CDR 이 관측된 CDR보다 작을 때는 실시간적으로 자기보상을 실시하여 관측된 CDR이 추정된 CDR을 초과하는 경우가 없게 한다. 시뮬레이션을 통하여 제안된 방법이 관측된 호 손실률에 기초하여 상한계값을 잘 추정해냄을 보인다.
본 연구에서는 앞선 연구를 통해 선정된 최적 입력 자료 조합을 이용하여 한강수계의 왕숙천과 금강유역의 갑천에 대한 Takagi-Sugeno 퍼지기법과 신경망을 연계한 뉴로-퍼지 홍수예측 모형을 구축하였다. 구축된 뉴로-퍼지 홍수예측 모형을 한강수계의 왕숙천과 금강유역의 갑천에 적용하여 30분, 60분, 90분, 120분, 150분, 180분의 선행시간에 대해 각각 홍수예측을 수행하였다. 선행시간별 예측수위를 관측수위와 비교한 결과 안정되고 정확도 높은
본 연구의 목적은 중소하천에서의 홍수예측을 위해 사용되는 기존의 수문학적 모형이 가지고 있는 문제점을 개선한 홍수예측 모형을 개발하는데 있다. 이를 위해 기존의 수문학적 강우-유출 모형에서 사용되는 많은 수문학적 자료 및 매개변수들의 사용 없이 오직 수위 및 강우측정 자료만을 이용하여 홍수를 예측할 수 있는 Takagi-Sugeno 퍼지 추론기법과 신경망을 연계한뉴로-퍼지홍수예측 모형을 구축하고자 하였다. 뉴로-퍼지 홍수예측 모형의 예측정확도는 입력자료
Recently , there have been considerable researches about the fusion of fuzzy logic and neural networks. The propose of thise researches is to combine the advantages of both. After the function of approximation using GMDP (Generalized Multi-Denderite Product)neural network for defuzzification operation of fuzzy controller, a new fuzzy-neural network is proposed. Fuzzy membership function of the proposed fuzzy-neural network can be adjusted by learning in order to be adaptive to the variations of a parameter or the external environment. To show the applicability of the proposed fuzzy-nerual network, the proposed model is applied to a speed control o fDC sevo motor. By the hardware implementation, we obtained the desriable results.