삼불화알루미늄(AlF3)이 포함된 염화물-불화물 혼합 용융염에서 ZIRLO 튜브를 이용한 지르코늄 전해정련공정을 실증하였다. 순환 전압전류실험 결과, AlF3의 농도가 증가함에 따라 금속환원의 개시 전위가 일정하게 증가하고 지르코늄-알루미늄 합금형성과 관련된 추가적인 peak의 크기가 점차 증가하는 것으로 나타났다. 전류조절 전착법과 달리, −1.2 V의 일정전위 에서 수행한 지르코늄 전해정련에서 방사형 판 구조의 지르코늄 성장이 염의 상단 표면에서 확연하게 나타났으며, 전착물 지름의 크기는 AlF3의 농도에 따라 점차 증가하는 것으로 나타났다. 주사전자현미경(SEM)과 에너지 분산 X선 분광기(EDX) 와 X선 광전자 분광기(XPS)를 이용하여 판 구조의 지르코늄 전착물을 분석한 결과, 극미량의 알루미늄이 지르코늄-알루미늄 합금 형태로 존재하며, 전착물의 상단과 하단 간에 서로 다른 화학성분구조를 갖는 것으로 나타났다. AlF3의 첨가는 전착물 내 잔류염 양을 줄이고, 지르코늄 회수를 위한 전류효율을 향상시키는 데 효과적인 것으로 나타났다.
Zirconium(Zr) nuclear fuel cladding tubes are made using a three-time pilgering and annealing process. In order to remove the oxidized layer and impurities on the surface of the tube, a pickling process is required. Zr is dissolved in HF and HNO3 mixed acid during the process and pickling waste acid, including dissolved Zr, is totally discarded after being neutralized. In this study, the waste acid was recycled by adding BaF2, which reacted with the Zr ion involved in the waste acid; Ba2ZrF8 was subsequently precipitated due to its low solubility in water. It is very difficult to extract zirconium from the as-recovered Ba2ZrF8 because its melting temperature is 1031 oC. Hence, we tried to recover Zr using an electrowinning process with a low temperature molten salt compound that was fabricated by adding ZrF4 to Ba2ZrF8 to decrease the melting point. Change of the Zr redox potential was observed using cyclic voltammetry; the voltage change of the cell was observed by polarization and chronopotentiometry. The structure of the electrodeposited Zr was analyzed and the electrodeposition characteristics were also evaluated.
전해정련을 이용한 폐 피복관 처리의 타당성을 살펴보기 위하여, 500℃의 LiCl-KCl 용융염 내에서 표면이 산화된 10 g 규모의Zircaloy-4 피복관 및 순수한 Zircaloy-4 피복관의 전기화학적 거동을 살펴보았다. 산화된 Zircaloy-4 피복관이 담긴 basket을 작업전극으로하여 전압-전류 관계를 측정한 결과, 산화되지 않은 Zircaloy-4 피복관과 비교해 Zr의 산화 peak는 Ag/AgCl 기준전극 대비, 약 -0.7 V ~ -0.8 V로 유사한 반면, 산화 전류의 크기는 확연하게 감소하는 것으로 나타난다. 이러한 결과는 -0.78V의 일정전위를 가한 전기화학적 용해 실험에서 살펴본 전류-시간 곡선에서도 유사하게 나타나며, 피복관 조각들의 평균 두께 및 무게 변화로부터 확인할 수 있다. Zircaloy-4 피복관이 산화되었을 경우, 표면의 산화막이 피복관의 전도성에 영향을 주어 basket 내 위치에 따라 전기화학적 용해의 균일성 및 속도를 떨어뜨리는 것으로 나타나지만, 표면의 미세한 결함과 Zr 산화물의 상 특성으로 인해 전기화학적 용해가 진행되는 것으로 판단된다.
본 연구에서는 전해환원공정에서 발생하는 폐용융염에서 LiCl을 재활용하기 위해 핵종제거 물질로 제올라이트를 사용할 때, 발생하는 폐제올라이트와 여기에 흡착된 유리염을 고감용으로 고화하는 경우의 고화체특성을 살폈다. 주종 핵종인 Cs의 침출속도는 붕규산유리보다는 석회유리로 고화한 경우, SAP과의 반응비와 유리의 첨가량을 변화시켜도 그 값은 1/10 정도로 낮았으며 그 범위는 0.1에서 0.01g/m2d이었다. 한편으로 Sr의 침출속도는 유리의 종류와 첨가량변화에 크게 지배를 받지 않으며 Cs보다 훨씬 낮은 0.001에서 0.0001g/m2d이었다. 그리고 압축강도는 유리의 함량이 증가할수록 감소하였고, 열팽창율은 어떤 온도에서 도 유리를 30% 함유한 것이 가장 적게 나타났다. 한편으로 이 고화체들의 용융온도는 약 1,100℃로서 유리의 함량이 증가하면 약간씩 높아졌다.
본 연구는 사용 후 핵연료의 금속전환 공정에서 발생되는 폐용융염을 고형화하는 방법으로 실리카 함유 무기물을 이용하여 폐용융염을 열적, 수화학적 안정한 화합물로 전환하는 방법을 제안하였다. 실리카 함유 무기물(SAP)은 일반적인 sol-gel process로 합성되었으며, 및 로 구성된다. 제조된 SAP을 에서 폐용융염과 반응시켜 각 금속염화물에 대한 반응특성 및 열안정성을 조사하고, PCT 침출시험법을 이용하여 수화학적 안정성을 평가하였다. LiCl은 와 로, CsCl는 CS-aluminosilicate와 로, 는 로, 는 로 전환되었다. 9시간 동안 반응시킨 후, 금속염화물의 전환율은 였으며, 까지 열감량은 1wt%이하로 TGA(Thermo Gravimetric Analysis)로 확인하였다. Cs 및 Sr의 침출속도는 로 매우 높은 내침출특성을 나타내었다. 이상의 결과로부터, SAP으로 명명된 안정화제(stabilizer)는 금속염화물로 구성된 폐용융염에 대해 매우 효과적인 것으로 판단된다. SAP을 이용한 폐용융염의 고화처리방법은 후속적인 안정성의 검증과정을 통하여 폐용융염의 최종처분부피를 최소화할 수 있는 대안적인 고화방법으로 고려될 수 있을 것으로 기대 된다.
본 연구는 사용 후 핵연료의 금속전환 공정에서 발생되는 폐용융염을 고형화하는 방법으로 GRSS(Gel-Route Slabilization/Solidifcation)개념을 이용한 전처 리법을 제안하였다. Sodium silicate와 H3p04로 구성된 물질계에서는 SiO에 의해 형성되는 반응모듈 내에서 휘발성 핵종은 열적으로 안정한 화합물로 전환된다. 얻어진 생성물은 붕규산 유리매질과의 반응을 통하여 Li는 LiPO 형태로 유지되며 Cs 및 Sr은 유리매질내에 포용될 수 있다. 또한 sodium silicate, HPO 및 ZrCl로 이루어진 물질계를 이용하여 내구성이 우수한 WZP 세라믹 고화매질을 합성하였다. 이상에서 NZP구조가 형성되며, Cs가 Li보다 우선하여 NZP구조를 형성하였다. 이상의 결과로부터, GRSS를 이용한 폐용융염의 전처리는 단순한 공정과 열적 안정성을 통하여 검증된 고화매질로 고형화가 가능토록하는 유효한 접근법이라 할 수 있으며, 수화학적 안정성의 검증을 통하여 ANL의 제올라이트를 이용한 고화법에 대한 대안이 될 것으로 기대된다.