The purpose of this study is to propose measures to increase evacuation safety by calculating the habitable time using a fire and evacuation simulation program for the Room-escape cafe currently in operation, and comparing and analyzing it with the evacuation required time. Assuming a fire due to overheating of electric heaters in use in front of the warehouse, the habitable time was calculated through fire simulation, and the occupant's evacuation time calculated through evacuation simulation according installation of safety facilities, etc. was compared and analyzed with the habitable time. In the case of escape room cafes with safety facilities installed, evacuation safety was satisfied, but in escape room cafes without safety facilities, the evacuation safety was not secure. As a result of analyzing evacuation safety for each scenario based on the ASET analyzed in the fire simulation, it was found that in scenario 1, evacuation safety was secured and everyone successfully evacuated, while in scenario 2, no one succeeded in evacuation. These results can be said to confirm that the installation of safety facilities is very important in business establishments such as escape room cafes, which become enclosed structures when games are started.
Human and material damage can be reduced if the risk is evaluated by engineering analysis of fire combustion products, smoke concentration, and smoke movement speed in the event of a fire in apartment houses and officetels. In this study, a lot of research on related safety evaluation in the basement needs to be studied and reflected in design, so experimental research was conducted to analyze the flow of smoke through computer simulation and provide analysis data through evacuation safety evaluation. First of all, the five-story underground parking lot subject to simulation has a large floor area, which is advantageous for improving evacuation safety performance, but it uses temperature detectors to increase detection time and fire spread speed. Second, it was analyzed that the evacuation time at all evacuation ports did not exceed the evacuation time, and as the time from the start of evacuation to the evacuation time was 216.9% compared to the travel time, it was evaluated that the safety performance of the evacuation was secured. Third, the above simulation results are a comprehensive safety evaluation based on the non-operation of fire extinguishing facilities in the fire room to increase safety, which means that smoother evacuation safety performance can be secured by linking fire extinguishing facilities.
This study analyzed the appropriate placement method by floor for evacuating all occupants during the nighttime through evacuation simulation. The analysis results are as follows. First, when non-self evacuating patients were placed on the first floor, 266 patients and 6 workers were found to be evacuated after 460 seconds. This result shows that it is meaningful to place non-self evacuating patients on the lower floor with a time that is faster than 540 seconds, which is an evaluation criterion set using life Safety standards for human. This result is a time faster than the evaluation criteria of 540 seconds, which is set using the life safety standards, and it can be confirmed that it is meaningful to place non-self evacuating patients on the lower floor. Next, as a result of placing non-self evacuating patients from the first floor to the fourth floor, it was found that evacuation of all occupants required 460 seconds for the first floor, 834 seconds for the second floor, 1,508 seconds for the third floor, and 1,915 seconds for the fourth floor. These results indicate that the placement of non-self evacuating patients on the rest of the floors, except for the first floor, can lead to dangerous results in excess of 540 seconds, which is a flashover time. As a result, it is necessary to place non-self evacuating patients on a lower floor for safe evacuation. The study has limitations except for comparative analysis of changes in evacuation time due to changes in the number of workers at eldery care hospitals and situations in which fire-fighting facilities such as sprinkler facilities operated. It is necessary to study the evacuation time linked to the operation of the fire-fighting facilities and the evacuation time according to the change in the number of workers in the future.
This study analyzed the evacuation time in indoor stadiums when exits that automatically open/close when the fire sensor is triggered are installed as a means to improve the problem of closing certain exits. Firstly, when spectators on the 2nd floor stands exit through the 1st floor exits, the RSET of all inhabitants was 529.8 seconds when the automatic opening/closing exits are broken and employees are not present. Secondly, when spectators on the 2nd floor stands exit through the 1st floor exits, the RSET of all inhabitants was 445 seconds when the automatic opening/closing exits with 750mm width are working but employees are not present. Lastly, when spectators on the 2nd floor stands exit through the 1st floor exits, the RSET of all spectators was 337 seconds when the automatic opening/closing exits with 1,500mm width are working and employees are present. As a result, it was revealed that the evacuation time is shortened when the automatic opening/closing exits are working. Additional comparative studies with actual simulations of people evacuating an indoor stadium and firefighting simulations considering smoke flow are necessary.
In this study, fire and evacuation safety of environmental energy facilities using fire and evacuation simulation was examined as part of performance-oriented design. The worst-case fire scenarios in which fire-fighting facilities such as sprinkler fire extinguishing and smoke control systems are not working, and the FDS analyzes the visibility, temperature distribution, and carbon monoxide concentration distribution through FDS. The safety was examined. As a result, it was proved that evacuation could limit the visibility, temperature, and carbon monoxide concentration in a smooth range, based on the safety standards set by relevant laws. In other words, it was possible to verify the safety of fire and evacuation for environmental energy facilities where a large amount of combustibles and fires coexist.
In this paper, we analyzed the safety on static and dynamic characteristics of a top-down evacuation instrument fixed on the exterior walls of a building using finite element analysis. For this purpose, the stress distribution characteristics of the H-beam structure were analyzed and the equivalent stress distribution, deflection displacement and natural frequency characteristics of the overall structure of the evacuation instrument were analyzed. The structures were applied with the materials of SS440 and SUS304. The static analysis results showed the elastic behavior with safety coefficients from 2.4 to 2.9, by confirming the structural safety. In addition, the analysis of the natural frequency characteristics confirmed that the vibration characteristics were higher than the external conditions of 20Hz.
This study investigated the smoke blocking and control systems for the safety of residents evacuation and for the prevention of smoke spread through the central corridor in the event of central corridor type of intelligent building fire. We offered additional ways of utilizing smoke ventilators and intake ventilation equipment and utilized CFD-based fire simulation program(FDS Ver.5.5.3) in order to analyze the effect. As a result, many differences in the smoke block effect, depending on the application of smoke ventilator and location of installation, was found. In addition, the result was found that larger effect was showed not in the case of application of smoke ventilator in central corridor only but application in fire room. The reason is that the smoke leakage is blocked primarily as air is flowed in the fire room through open door by operation of intake smoke ventilator in the public corridor and secondarily, the smoke leakage to the public corridor could be blocked as fire and smoke were released to the opened smoke ventilator continuously. Especially, the effect was maximized through complex interactions by applying smoke ventilator and intake ventilation equipment in corridor together rather than applying smoke ventilator and intake ventilation equipment independently. The proposed measure through this study shall be considered from architectural plan as one of ways for blocking from smoke spread to the central corridor in the central corridor type of intelligent building. In addition, flaws on regulation shall be established and supplemented.