검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 34

        1.
        2018.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        도심지나 문화재가 인접한 지역 등의 소음, 진동 등 기존 발파해체 공법이 제한적인 조건에서 사용할 수 있는 구조물 해체 공법으로 무소음화학팽창제(soundless chemical demolition agent, SCDA)를 이용한 공법이 있다. 그러나 SCDA의 사용에 대한 기준이나 가이드라인에 참고될 만한 연구는 미미한 실정이다. 이 연구에서는 실내실험을 수행하여 강관의 길이, 외부수분차단, 수화열 발산 등의 다양한 조건에 따른 SCDA의 팽창압 발현 특성을 확인하였다. 또한 SCDA의 최소요구팽창압 예측을 위한 해석모델(자유단 1면, 고정단 3면의 직사각형 모델)을 개발하고 주요변수해석(홀 간 거리, 콘크리트 압축강도)을 수행하였다. 이 연구의 해석결과를 활용하여 자유단으로부터 콘크리트 구조물의 박락을 효과적으로 유도할 수 있을 것으로 판단된다.
        4,000원
        3.
        2020.06 KCI 등재 SCOPUS 서비스 종료(열람 제한)
        해체 원전에서 총 폐기물의 약 70~80%에 해당하는 많은 양의 콘크리트 폐기물은 해체 폐기물의 대부분을 차지한다. 해체 시 발생된 콘크리트 폐기물은 핵종별 농도에 따라 규제해제 폐기물과 방사성폐기물로 정의할 수 있다. 따라서, 방사성 콘크리 트 폐기물의 처분 비용을 저감하기 위하여 자체 처분 및 제한적 재활용을 위한 제염 작업의 수행이 중요하다. 그러므로 콘크리트 폐기물의 효율적인 제염 작업을 위해 내부 방사능 분포를 예측하는 것이 필수적이다. 본 연구는 원전 해체 시, 발생되는 콘크리트 폐기물의 내부 방사능 분포를 예측하기 위하여 다양한 컴프턴 영상 재구성 방법의 성능을 비교하였다. 다양한 컴프턴 영상 재구성 방법으로 단순 역투사(SBP), 필터 후 역투사(FBP), 최대우도 기댓값 최대화 방법(MLEM), 그리고 기존 의 MLEM의 시스템 반응 함수에 에너지 정보가 결합되어 확률적으로 계산하는 최대우도 기댓값 최대화 방법(E-MLEM)이 사용되었다. 재구성된 영상을 획득한 후, 정량적인 분석 방법을 이용하여 재구성된 영상의 성능을 정량적으로 비교 및 평가하였다. MLEM 및 E-MLEM 영상 재구성 방법은 각각 재구성된 영상에서 높은 이미지 분해능과 신호 대 잡음비를 유지하는데 있어 가장 좋은 성능을 보여주었다. 본 연구에서 도출된 결과들은 원자력 시설 해체 시 방사성 콘크리트 폐기물의 내부 방사능 분포를 예측하기 위한 수단으로 컴프턴 영상을 사용할 수 있는 가능성을 보여주었다.
        4.
        2020.03 KCI 등재 SCOPUS 서비스 종료(열람 제한)
        콘크리트 구조물 절단에 사용되고 있는 다이아몬드 와이어 쏘가 장착된 당김형 절단 장치의 단점을 개선하여 밀기형 절단장치를 개발하였다. 개발된 밀기형 절단장치에는 먼지 집진 커버가 부착되며 마찰열을 냉각하기 위한 건식이나 습식방법을 선택할 수 있다. 개발된 절단장치의 동작특성과 집진 먼지의 누설률 측정을 실험하였다. 시험결과 원활한 동작특성을 보였으며, 먼지의 누설률은 1.7%인 것으로 나타났다. 개발된 절단장비를 사용하여 생물학적 차폐 콘크리트 절단 시 작업자의 내부 피폭선량을 평가하였다. 보수적 평가를 위해 노심 중심부분을 절단하는 경우를 가정하였다. 비방사능이 99.5 Bq·g-1인 누설 먼지로 인해 반면마스크를 착용한 작업자의 예탁유효선량은 0.25 mSv로 평가되었다. 개발된 밀기형 절단장비 사용 시 미량의 먼지 누설률로 인해 작업자의 방사선 피폭이 저감되며, 사용의 편리성으로 세부 절단 계획을 수립할 수 있어 방사성 콘크 리트 폐기물 감량에도 기여할 수 있다. 따라서 원전의 방사화된 생물학적 차폐 콘크리트를 비롯하여 철근 콘크리트 구조물 해체 작업 시 절단 장비로서 사용될 수 있을 것이다.
        5.
        2019.02 KCI 등재 서비스 종료(열람 제한)
        사이클로트론 가동 시 핵반응으로 인해 중성자가 발생되며, 발생된 중성자는 콘크리트벽에 흡수되어 방 사화를 일으키게 된다. 이에 본 연구에서는 콘크리트 종류에 따른 방사화 분석과 방사화 핵종이 미치는 영향에 대해 알아보고자 하였다. 실험은 몬테카를로 시뮬레이션 및 RESRAD 모델을 사용하였다. 실험 결과 콘크리트의 Fe 함유량이 높을수록 차폐율이 증가하였으며, Fe은 56Fe(n, 2np)54Mn 반응으로 인하여 종사자 에게 미치는 영향 또한 같이 증가하였다. 하지만, 방사화로 생성된 핵종의 방사능은 매우 낮게 나타나 종사 자들에게 미치는 영향은 매우 낮은 것으로 나타났다. 방사화된 콘크리트 해체 처분 시 방사능이 자체처분 한도 미만으로 일반폐기물로써 처리되어야 하며, 14C의 영향을 최소화하기 위해 매립이 아닌 도로 보수와 같은 표층에 재활용 되어야 할 것이다.
        6.
        2018.12 KCI 등재 SCOPUS 서비스 종료(열람 제한)
        2017년 고리 1 호기 영구정지를 계기로 국내 원자력발전소의 해체가 점차 가시화되고 있다. 앞으로 원전 해체가 본격적으로 추진될 경우 원전 1기 당 약 16만 t의 콘크리트 폐기물이 발생될 것으로 예측되었으며, 이들 콘크리트 폐기물은 대부분 오염 준위가 매우 낮아 자체처분 대상으로 고려될 수 있다. 따라서, 국내 자체처분 폐기물(원자력안전위원회 고시 2017-65호에 따른 자체처분 허용농도 또는 자체처분 허용선량을 만족하는 폐기물)에 대한 현행 규제체계가 대량의 콘크리트 폐기물에 대한 무제한적 자체처분에 대해서도 유효성을 유지할 수 있는지를 사전에 확인할 필요가 있다. 이와 관련, 국내 자체처분 규정 개발 시 참조기준인 IAEA SRS No. 44를 심층분석하고, 국내 산업계 현황을 반영한 입력값과 계산식을 이용하여 4가지 자체 처분 시나리오에 대한 예상 피폭방사선량을 평가하였다. 그 결과, 재활용 시나리오에 대한 예상선량은 대부분 정상 시나리오에 대한 자체처분 선량 기준(즉, 0.01 mSv·y-1)보다 낮은 것으로 평가되었으나, 성토 후 거주 시나리오의 경우 보수적인 가정을 적용하면 자체처분 선량 기준을 초과할 가능성도 배제할 수 없는 것으로 나타났다. 따라서, 대량의 해체 콘크리트 폐기물의 안전하고 지속가능한 자체처분을 위해서는 폐기물 처리업체 다변화, 성토 시나리오에 대한 보다 구체적인 평가, 성토를 통한 자체처분에 대한 부분적 제한조건 설정 등을 고려할 수 있다.
        7.
        2018.05 KCI 등재 서비스 종료(열람 제한)
        건설해체공사와 유사한 특성을 갖는 원전 제염해체공사에서 구조적 리스크 관리는 매우 중요하다(DOE). 하지만 제염해체작업 중 발생할 수 있는 구조적 재난재해 및 위험요소는 크게 고려하지 않고 있다. 이로 인해, 구조적 재난 및 재해에 의해 발생할 수 있는 작업자 리스크 역시 체계적으로 정립되어 있지 않다. 또한, 재난 및 재해 그리고 리스크 분류체계는 작업의 특성(작업프로세스, 활용장비, 작업 위치 등)별로 분류되어 있지 않아 실제 해체공사를 위한 매뉴얼로 활용하기에 무리가 있다. 따라서 차폐 콘크리트 구조물 제염해체공사의 건설해체공사와의 유사성을 기반으로 작업의 특성별로 분류한 리스크를 도출하는 것은 원자력 발전소 해체공사 리스크 관리에 필수적으로 판단한다.
        8.
        2017.12 KCI 등재 SCOPUS 서비스 종료(열람 제한)
        2017년 6월에 영구정지 된 고리 1호기의 해체는 한국의 상업 원전에 대한 첫 해체 사례가 될 것이다. 해체 과정 중에 발생하 는 폐기물에 대한 처분은 전체 해체 비용의 많은 부분을 차지한다. 따라서 방사화 및 오염된 콘크리트 구조물은 적절한 해체 전략을 수립하여 경제적이고 안전하게 해체되어야 한다. 본 논문에서는 생물학적 차폐체에 대한 최적화된 해체 및 처분 시 나리오를 연구하였다. 해체사례, 폐기물 처분 규정 및 처리 기술을 분석하였다. 그리고 생물학적 차폐체 제거 과정의 폐기물 발생량을 최소화하기 위해서, 최적 해체 시나리오를 제시하였고 폐기물 처분 방안을 도출하였다.
        9.
        2017.11 서비스 종료(열람 제한)
        원자력시설의 해체 시 발생하게 되는 해체 방사성폐기물을 나누면 크게 금속, 콘크리트, 토양 및 기타 폐기물 등으로 나뉘는데, 이중에서 콘크리트폐기물은 80%이상을 차지하고 있으며, EC(European Commission)의 보고서에 의하면 2060년까지 원자력시설의 해체에 따라 유럽에서만 약 500만 톤의 콘크리트폐기물이 발생할 것으로 예상하고 있다. 상용 원전의 경우 해체 콘크리트폐기물이 약 50∼55만 톤 정도 발생하고 있으며 이들 방사성폐기물은 약 5% 이내로 1기의 상용 원자로를 해체 할 경우 방사성 콘크리트폐기물은 약 25,000 톤이 발생한다. 이는 원전 수명기간에 발생하는 방사성폐기물의 총량을 훨씬 상회하는 물량이다. 이에 원자력 선진국에서는 해체 콘크리트폐기물의 감용 및 재활용에 대한 기술개발이 이미 진행되고 있으며, 국내의 경우에도 2030년 이내 12기의 원전 해체가 예상됨에 따라 해체 콘크리트폐기물을 처리/처분하기 위한 기반기술 확보가 수행되어야 한다. 이러한 기술개발은 방사성 콘크리트폐기물의 부피감용과 환경안전성 및 재활용을 통한 국내 부존자원의 활용 극대화 관점에서 반드시 필요하다. 본 연구에서는 해체 콘크리트폐기물의 재활용에 필요한 핵심기술로서 오염 해체 콘크리트폐기물의 감용 및 재활용하기 위한 기술현황을 논의하였다. 해체 콘크리트폐기물 처리기술에서 가장 중요한 요소기술은 대부분의 방사성 물질이 농축되어 있는 미세분말을 처리하여 재생시멘트, 재생골재 등으로 재활용하는 것이다. 유럽의 경우 해체 콘크리트폐기물의 65%를 방사성폐기물 저장고의 폐기물 드럼이나 컨테이너의 Encapsulation material, 방사성 보호 차폐물을 위한 콘크리트, 제한된 장소에서 새로운 시설의 건설에 이용하고 있다. 일본은 환경적 부담과 방사성폐기물의 감용을 위해서 원자력시설에서 발생하는 콘크리트폐기물의 재활용 기술 연구를 통해 생산된 고품질 재생골재의 특성 및 환경적 영향을 평가하고자 Wall model과 Building model을 세워 일반 콘크리트와 비교 평가 중에 있다. 또한 일부 혼합재는 잡고체 폐기물의 처분을 위한 모르타르로 재활용하고 있는데 이는 일반 혼합재보다 고비용이지만 life cycle cost를 고려할 경우 재활용 시멘트 보다 경제적인 것으로 평가되고 있다.
        10.
        2017.11 서비스 종료(열람 제한)
        원자력발전소가 폐로 단계에 도달하게 될 경우, 다량의 방사성물질 및 폐기물이 발생한다. 특히, 해체 시 발생되는 콘크리트 폐기물은 경제적, 환경적 측면을 고려해서 재사용, 재활용, 처분 등이 관리방법 중 가장 적합한 방법을 선정해야 한다. 원자력시설의 해체 시 발생하게 되는 콘크리트 폐기물은 80%이상을 차지하고 있으며, EC(European Commission)의 보고서에 의하면 2060년까지 원자력 시설의 해체에 따라 유럽에서만 약 500만 톤의 콘크리트 폐기물이 발생할 것으로 예상하고 있다. 이러한 막대한 양의 콘크리트 폐기물에 대해 프랑스, 일본, 벨기에 등에서는 이미 콘크리트 폐기물의 제염 및 저감에 대한 연구가 심도 있게 진행 중에 있으며 프랑스의 경우에는 실험적인 연구를 거쳐서 상용화 수준에 다다른 실정이다. 콘크리트 폐기물은 원자력시설에 제한적으로 재활용이 가능하며, 방사성 폐기물의 저장 및 기반시설의 건설, 방사성 폐기물 처리에 사용되는 콘크리트 고화체, shielding block, backfiller 등으로 사용되고 있다. 해체 콘크리트 폐기물은 용적오염과 표면 오염으로 이루어져 있으며 대부분 표면으로부터 약 1∼10mm 두께로 오염되어 있어 기계적 처리 방법을 통해 방사성 폐기물로서 처리되어야 한다. 방대한 양으로 발생되는 콘크리트 해체폐기물을 자체처분 하거나 재활용한다면 처분 대상 폐기물량의 감소로 인한 처분 비용의 절감 및 처분 안전성의 증대뿐만 아니라 자원의 재활용성을 증대시킨다는 점에서 매우 긍정적인 측면을 나타낸다. 원자력시설의 콘크리트 제염기술로는 물리적 방법을 사용한 제염기술이 주로 사용되며 이를 다시 세분화 하면 표면제염기술과 표면파쇄제염으로 구분된다. 방사성 콘크리트의 물리적 표면제염 공정 및 장치 선정시에는 오염확산 및 작업자의 방사능 피폭 최소화, 제염 폐기물의 최종 처리방법, 제염 작업 최적화를 위한 최단, 최소 작업과 장소, 대상, 목적 등을 고려하여 제염기술이 선정되어야 한다. 이는 곧바로 방사능 구역에서의 작업자의 안전성 향상 및 해체비용 절감과 직결되기 때문이다. 그러나 원자력이라는 특수한 상황에서는 최적의 기술 선정시 경제적인 측면 보다는 안전성에 바탕을 두고, 주위 환경이 오염을 최대한 억제하는 방법에 초점을 맞추어야 할 것이다.
        14.
        2015.10 서비스 종료(열람 제한)
        Traditional methods for concrete structure demolition is not adequate specially for urban areas and historical places due to hazard of explosive and noise. Therefore, Soundless Chemical Demolition Agents (SCDA) is useful in urban area and historical places. In this study, a analysis for SCDA is performed depending on boundary conditions.
        1 2