APR 1400 액체방사성폐기물관리계통 효율성 증가와 계통의 성능 개선을 위한 방안으로 핵종 이온 광물화 처리기술을 적용 하는 것을 고려하였다. 핵종 이온 광물화 처리기술은 현재까지 발전소에 실제적으로 적용되진 않았지만 원자력발전소의 액 체방사성폐기물에 존재하는 다양한 핵종 이온을 최소 95% 이상 선택적으로 제거 가능 하다는 것을 실험적으로 증명한 바 있다. 본 논문은 핵종 이온 광물화 처리기술의 제염율을 반영하여 기존 설계에 적용 가능성을 확인하였으며, 기존 설계를 개선할 수 있는 방안을 마련하였다. 핵종 이온 광물화 처리기술의 제염 특성과 기존의 액체방사성폐기물관리계통 설계 및 운전 경험을 고려하여 최적의 적용 위치를 결정하였다. 원자력발전 운영에 따라 발생하는 액체방사성물질이 수집되는 수집탱크에 핵종 이온 광물화 처리기술을 적용하는 것이 기존 설계의 영향이 가장 적을 것이며, 개선 효과도 가장 큰 것으로 해석되었다. 핵종 이온 광물화 처리기술이 현재의 APR 1400 발전소 또는 신규 원전에 적용될 경우 액체방사성폐기물관리계통의 운전 효율성 증가와 계통의 성능 개선이 기대된다.
최근 한국에서 원전해체는 중요한 이슈이다. 원전의 운영 시와 비교해볼 때, 원전 해체 시에는 방사성물질의 방출이 크지 않을 것으로 예상되지만, 주민은 항상 방사선피폭으로부터 보호되어야 한다. 이에 대한 효과적인 관리를 위해, 연간 방출관리치와 방출한도치를 원자력안전위원회 고시 및 일반인 선량한도 기준으로부터 유도하였다. 기체상 유출물에 의한 대기 확산 및 침적 인자는 신고리 발전소 기상탑에서 2008년부터 2010년까지 3년간 수집 된 기상자료를 토대로 XOQDOQ 컴퓨터 코드를 이용해서 평가하였다. 선량평가는 ENDOS-G 컴퓨터 코드를 사용하였다. 이 컴퓨터 코드를 이용하여 기체상 유출물의 연간 방출관리치 및 방출한도치를 평가한 결과, 핵종별로 차이가 있었는데, 이는 연령에 따른 방사선민감도의 차이에 기인한다고 할 수 있다. 본 평가 방법 및 결과는 향후 원전 해체 시 방사성유출물 관리에 중요한 정보를 제공할 수 있을 것으로 판단된다.
2017년 고리 1호기 영구정지 이후 규제기관과 원전운영자는 2031년으로 예정된 부지 제염 및 복원을 수행하기 위해 사전준비 작업을 진행해오고 있다. 적절한 계획 수립 및 효과적인 규제활동을 위해서 규제지침 개발과 기술적 근거수립이 무엇보다 선행되어야 한다. 국내에선 연구용 원자로 해체경험이 있지만 상업용 원전은 없기 때문에 해외 해체 선도국의 부지복원 사례연구를 통해 토양 제염과 관련한 기술사항 및 규제기준에 대한 정보를 제공한다면 고리 1호기 복원계획 및 규제기준 수 립에 효과적일 것이다. 미국은 상업용 원전에 대한 다양한 해체경험을 축적해 왔으며 RESRAD 프로그램 및 MARSSIM 절차 와 같은 체계를 개발ㆍ적용하여 오염된 부지의 조사, 제염, 복원 및 해제를 통합적으로 수행하고 있다. 이 논문에서는 미국의 5개 상업용 원전(해체완료 4개, 지연해체 1개)을 대상으로 심층 토양오염에 대한 부지복원 사례연구를 수행하였다. 심층 토양의 경우 표층토양과 달리 미국에서도 정형화된 평가방법론이 아직 정립되어 있지 않았고, 오염평가시 지하수 영향을 고려해야 하는 특성이 있음이 확인되었다. 따라서 향후 고리 1호기 부지복원 전략수립 및 규제지침 개발에 고려할 만한 제안 사항을 도출하고자 기술 및 규제 관점에서 심층토양에 대한 오염평가, 제염기준 수립, 제염작업 수행 및 결과 검증까지 단계 별 주요사례를 정리하고, 미국 해체사업자가 적용한 심층토양 평가방법과 규제기관과 해체사업자 간에 논의된 주요 쟁점사 항을 분석하여 시사점을 도출하였다.
다수호기 부지에 위치한 원전의 해체는 인근에 위치한 운영중인 원전으로 인해 작업자에게 추가적인 방사선 피폭 위험을 야기할 수 있다. 따라서 인근의 운영중인 다수호기 원전에 의한 해체 작업자에 대한 피폭 선량 평가가 필요하다. ENDOS프로그램은 한국원자력연구원(KAERI)에서 개발된 선량평가 전산코드로, 하위 프로그램으로 대기 확산 평가 프로그램인 ENDOSATM과 기체 방사성 배출물에 의한 피폭 선량 계산을 수행하는 ENDOS-G가 있다. 이 프로그램들을 이용하여 고리 1호기 해 체작업자에 대한 다수호기 원전 운영에 의한 피폭 선량을 계산한 결과, 2.31×10-3 mSv·y-1로 일반인에 대한 피폭선량 기준치인 1 mSv·y-1에 비교해 보았을때 큰 영향이 없을 것이라는 판단에 도달할 수 있었다. 앞으로 예상되는 국내 해체 원전의 경우 모두 다수호기 부지에 위치하여 이 연구 방법과 결과가 활용될 수 있을 것이라고 기대한다.
원전 해체를 준비함에 있어 정성적 또는 정량적 위험도 평가는 필수요소이다. 해체 공정간 발생하는 방사선학적 및 비방사선학적 위험요소는 해체 작업자 및 대중의 안전을 보장하기 위해 사전에 평가되어야 한다. 현재 해체 경험이 많은 미국의 기 존 사업자들 및 NRC의 경우 위험의 중대성만 평가하는 결정론적 위험도 평가에 집중하고 있다. 하지만 최근 IAEA는 위험도 매트릭스를 활용한 위험도평가를 결정론적 위험도 평가의 대체안으로 제안하고 있다. 따라서 본 연구에서는 위험도평가에 앞서 해체 공정 별 해체 활동을 Risk Breakdown Structure에 맞추어 정리하였고, 미국 20여개 해체 원전에서 해체 공정별 위험도 평가 시행 중 선정한 해체 활동간 잠재적 사고를 해체 활동에 맞게 체계적으로 정리하였다. 그리고 복합 리스크 매트릭 스를 개발 및 활용하여 해체 공정간 방사선학적 및 비방사선학적 위험요소의 위험도를 평가하여 정량적으로 수치화 하였다.
원자력발전소 운영 과정에서 발생되는 폐기물인 폐수지를 원천적으로 저감하기 위해, 새로운 폐수 정화기술을 개발하고 원전 폐수처리시스템에 가상적으로 적용하여 효용성을 평가하고자 하였다. 본 기술의 기본 원리는 폐수에 존재하는 주요 핵 종이온들을 생물학적 혹은 화학적 방법을 통해 무기 결정광물로 바꾸는 방식이다. 실험실에서 폐수를 대상으로 회분식실험을 통해 핵종 제거율을 측정한 결과, 생물학적 방법은 24시간 이내에 세슘을 80% 이상 제거하였고, 화학적 방법은 95% 이상 세슘을 선택적으로 제거할 수 있었다. 그리고 원전 폐수에 존재하는 다른 주요 핵종들(Co, Ni, Fe, Cr, Mn, Eu)에 대해서도 초기 99% 이상의 높은 제거율을 보여 주었다. 우리는 APR1400 원자력발전소의 폐수처리시스템 공정에서 역삼투압(R/O)과 유기 이온교환수지 모듈 사이에 가상으로 본 기술 모듈을 설치하였다. 가상의 모듈 설치를 통한 기술적 타당성 평가를 통해, 우리는 폐수의 주요 핵종들이 90% 이상 선택적으로 제거되고 폐수지의 발생량이 대폭 감소된다는 결과를 얻을 수 있었다. 이러한 결과가 의미하는 바는 본 기술이 향후 미래에 상용화되었을 경우, 폐수지 관리 비용을 크게 감소시키고 수지 수명도 대폭 연장시킬 수 있어, 결과적으로 월성 방사성폐기물 처분시설의 저장고 포화시점을 최대한 늦출 수 있는 이점이 있다.
국내 최초의 상업원전인 고리1호기가 2017년 6월에 영구 정지되었다. 고리1호기 해체를 시작으로 한국은 원전 해체시장에 본격적으로 발을 내딛는다. 원자력발전소 해체를 위해서는 고려해야 할 사항들이 많으며, 방사선환경영향평가 또한 그 중 하나이다. 방사선환경영향평가의 목적은 주변주민의 건강과 안전을 도모하기 위해, 해체 전 및 해체 중에 해당 시설에서 방 출되는 방사성물질로부터 주변주민이 받는 피폭방사선량이 규제 제한치를 초과하지 않음을 확인하는 것이다. 현재 국내에는 해체시 방사선환경영향평가서를 작성하는데 필요한 세부지침이 미비한 상황으로, 다수의 원전 해체 경험을 보유한 미국의 해체시 방사선환경영향평가서를 비교·분석하여 국내 상황에 맞는 해체시 방사선환경영향평가 방안을 개발하였다.
2017년 6월에 영구정지 된 고리 1호기의 해체는 한국의 상업 원전에 대한 첫 해체 사례가 될 것이다. 해체 과정 중에 발생하 는 폐기물에 대한 처분은 전체 해체 비용의 많은 부분을 차지한다. 따라서 방사화 및 오염된 콘크리트 구조물은 적절한 해체 전략을 수립하여 경제적이고 안전하게 해체되어야 한다. 본 논문에서는 생물학적 차폐체에 대한 최적화된 해체 및 처분 시 나리오를 연구하였다. 해체사례, 폐기물 처분 규정 및 처리 기술을 분석하였다. 그리고 생물학적 차폐체 제거 과정의 폐기물 발생량을 최소화하기 위해서, 최적 해체 시나리오를 제시하였고 폐기물 처분 방안을 도출하였다.
방사성금속폐기물의 관리 옵션들을 안전성, 경제성, 작업자 피폭, 부피 감용 등의 선별 기준을 적용하여 비교 평가하였다. 원전 해체로부터 발생하는 금속폐기물의 관리 옵션에는 무구속 방출, 제한적 재사용, 그리고 직접 처분이 있다. 고려된 각 각의 옵션들은 금속폐기물의 절단과 용융에 의한 부피감용을 수반한다. AHP기법을 적용하여 각 옵션들의 순위를 부여하였 다. 방사성금속폐기물을 용융하여 금속 잉곳을 제조한 후 제한적 재이용 또는 무구속 방출하는 방안이 가장 효율적인 옵션 으로 도출되었다.
한국의 가장 오래된 상업 원전인 고리 1호기가 2017년에 해체가 이루어질 예정이다. 원전 해체 폐기물의 적절한 처리는 효율적인 원전해체에 있어 중요한 역할을 할 것이다. 특히, 저준위 또는 오염되지 않은 금속폐기물의 재활용은 폐기물 발생 저감은 물론 처분장의 공간을 절약하는데 기여할 것이다. 본 논문은 재활용 시스템의 개념설계와 정의된 업무 흐름에서 발생 하는 피폭 선량을 평가하는데 그 목적이 있다. 작업의 흐름과 운전 개념을 정립하기 위해 다양한 형태의 다이어그램을 설계 하였다. 선량평가에 필요한 시나리오는 개념설계를 기반으로 선정되었으며, RESRAD-RECYCLE을 이용하여 선량을 평가하였다. 이를 통하여, 결정적 시나리오 선별, 핵종 특성 및 핵종 분배가 선량에 미치는 영향을 분석하였다. 더 나아가, 선량분석은 피폭 시나리오에 대한 대체 방안 수립, 필요한 제염 및 방사선방어 프로세스 그리고 허용 방사능 검토의 정보를 제공 하는데 사용 될 수 있을 것이다.
우리나라를 포함한 많은 국가들에서 향후 원전 해체로 저준위폐기물이 대량으로 발생할 전망이다. 본 논문에서는 미국의 저준위방사성폐기물 처분 관련 규제 기준을 분석하고, 특히 원자력발전소의 운영 및 해체를 포함하는 전주기에서 발생하 는 폐기물의 처분 옵션을 확장하는 방안으로 사용되고 있는 저준위방사성폐기물의 블랜딩에 대해 검토하였다. 2007년 미 국 NRC는 미국 저준위폐기물 관리 프로그램에 대한 전략분석 결과, 방사선위험도와 성능평가에 기반한 새로운 저준위폐기 물 관리 규제의 필요성을 제기하였는데, 특히 방사성핵종 농도가 다른 폐기물의 블랜딩을 처분에 대한 옵션을 다양화할 수 있는 안전한 방안으로 제시하였다. NRC는 블랜딩을 처분에 적합하도록 방사성핵종의 농도가 다른 저준위폐기물을 비교적 균일하게 혼합(mixing)하는 것으로 정의하였다. 2015년 2월 농도 평균과 포장에 대한 NRC BTP의 개정판으로 공표된 블랜 딩에 대한 구체적인 기술요건을 분석하였고 국내 해체폐기물에 대한 적용 방안도 예시하였다. 대량으로 발생할 해체폐기물 에 대해 블랜딩과 농도평균을 적용하면 처분 효율성을 향상시킬 수 있다. 바이오쉴드 콘크리트에 대한 농도평균 적용에 대 해 예시하였다.
타지키스탄공화국에는 10군데의 우라늄광산 부지에 55백만톤의 우라늄광산 폐기물이 적치 되어 있는데 부지 면적이 200 핵 타아르에 달한다. 이에 따라 우라늄 폐광과 폐기물의 안전한 관리가 주요 이슈로 부각되고 있다. 부지 복원을 위한 천연방벽 과 인공방벽으로 구성된 다중 복토층은 성능 목표와 부지 조건을 고려하여 설치되어야 한다. 본 논문의 목적은 Degmay 부 지에 장기간 (100년 이상)의 환경보호를 제공할 수 있는 경제적인 다중 복토층 개념을 제시 하는 것이다. HELP 코드를 사용 하여 Degmay 부지의 복토층 설계 개념의 평가를 수행하였다. 그 결과 70 cm의 덮개층, 30 cm의 배수층, 지오멤브레인 라 이너 그리고 60 cm의 토양 방벽층으로 구성된 복토층 개념이 두께를 최소화 할 수 있고 비교된 여러 설계개념 중 가장 경제 적인 설계 안으로 제시되었다.
최근 국내에서는 월성 1호기 및 고리 1호기를 포함하여 운영 중인 원자력발전소가 노후화함에 따라 원전 해체에 대한 관심 이 많이 증대되고 있다. 이와 관련하여 월성 1호기의 계속운전이 최근 결정되었으며, 고리 1호기의 경우 2017년 6월 영구정 지하기로 결정되었다. 이에 본 논문에서는 상업용 원자로로서는 국내 최초로 해체가 예정된 고리 1호기에 대해, 원자로 압 력용기 자체의 해체로 인해 발생하는 방사성폐기물 최종 처분량을 원자로 압력용기 절단 방법 및 방사성폐기물 처분용기를 고려하여 산정하였다. 처분용기를 고려한 방사성폐기물 처분량을 산정한 결과 원자로 압력용기 몸통 부위보다는 반구 형태 의 헤드 부분을 작게 절단할수록 최종 처분량이 감소하는 것으로 예측되었다. 또한 경주 방폐장의 200 L 및 320 L 드럼 처분 용 처분용기의 경우 무게 제한으로 인해 적재효율이 좋지 못한 것으로 나타났다.
원전해체시장이 본격적으로 도래함에 따라 그에 따른 기술연구가 부각되고 있다. 그러한 기술 중 방사선 제염은 직접적인 원전해체 과정 중 가장 초반에 행해지는 작업으로 현장 근로자의 안전확보 및 폐기물 양 감소를 위해 수행되는 중요한 작업 이다. 제염을 통해 폐기물 표면에 존재하는 방사선 물질을 제거하게 되는데 해체에 적용되는 제염기술은 보다 강한 매개체 를 사용하거나 개선된 설비를 활용하여 표면층 제거 정도가 일반적인 제염보다 훨씬 크다. 따라서 제염 계획 수립시 다양 한 관점에서 분석 방법이 필요하다. 본 연구에서는 제염기술 선정을 위해 고려해야 할 요인을 설명하였으며, 대표적인 제염 기술 사례 분석을 통해 실제 기술 수행을 위해 원전 설비 내 제염 아이템 선정 및 제염 장비 활용을 위해 검토해야 할 사항 을 제시하였다.
국내 원자력발전소에서는 사용후핵연료 저장용량의 확대를 위해 사용후핵연료저장조에 조밀저장대를 설치하고 있지만 한 빛원전은 2024년에 포화가 예상된다. 또한 10개의 원자력발전소가 2029년까지 설계수명에 도달하게 된다. 하지만 원전운영 과 해체를 위한 국내 사용후핵연료 관리정책은 아직 결정되지 않은 상황이다. 미국의 경우 원전해체시 사용후핵연료를 중간 저장시설 또는 영구처분장으로 이송하기 전까지 임시적으로 독립된 사용후연료저장조(이하 ‘SFPI’) 방식을 운영하는 사례가 있다. SFPI는 원전해체시 운전정지 후 사용후핵연료를 저장하는데 있어서 방사선 노출 저감, 운영비용 절감, 안전성 보강 등 의 효과를 기대할 수 있다. 따라서 이 논문에서는 미국의 SFPI 운영경험, 시스템, 적용규정 등에 대한 사례연구를 수행하였 다. 결론적으로 SFPI 국내 적용을 위해서는 사용후핵연료저장 계통의 설계변경 범위 및 예상 소요비용 확정, 원전 해체계획 에 설비개선 계획 반영제출, 주기적안전성평가(PSR) 방법 등을 활용한 안전성 평가(운영기간 10 년), 설계변경을 위한 운영 변경허가 신청, 규제기관 심사 및 허가 취득, 설계변경 수행, 규제기관의 확인점검, SFPI 운영을 위한 교육 및 시운전, SFPI 운영 및 정기검사, SFPI 해체 등의 절차가 필요하다.