검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 4

        1.
        2003.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        손상평가를 위해 많은 연구자들에 의해 인공신경망이 이용되어 왔다. 그러나, 인공신경망을 이용한 손상평가에 있어 정확성과 능률성을 제고하기 위해서는 몇가지 문제점이 있다. 기존의 인공신경망 특히 역전파신경망(BPNN)의 경우 신경망 학습을 위해 많은 수의 학습패턴을 필요로 하며, 또한 신경망의 구조와 해의 수렴간에 어떤 확정적인 관계가 존재하지 않는다. 따라서 신경망의 은닉층의 수와 한 은닉층에서의 노드수는 시행착오적으로 결정되게 된다. 이러한 많은 훈련패턴의 준비와 최적의 신경망 구조 결정을 위해서는 많은 시간이 필요하다. 본 논문에서는 이러한 단점들을 극복하기 위해 확률신경망을 패턴분류기로 사용하였다. 이를 판형철도교의 손상평가에 수치해석적으로 검증하였다. 또한 확률신경망을 이용한 철도판형교 손상평가시 적절한 훈련패턴 선택을 위해 모드형상과 고유진동수를 사용한 경우의 적용성에 대해 검토하였다.
        4,000원
        2.
        2007.01 KCI 등재 서비스 종료(열람 제한)
        구조 재료와 시공기술의 발달로 구조물은 높고 길게 설계할 수 있게 되었으나, 그에 따른 진동문제와 사용성에 관한 문제가 발생하였고, 구조물의 과다한 변위는 구조물에 심각한 손상을 발생시켰다. 이러한 구조물의 진동 문제를 해결하기 위하여 본 논문에서는 구조물의 상태벡터와 제어력만으로 구성된 훈련패턴을 기본으로 하여 인공신경망이론과 확률신경망이론을 사용하여 구조물의 진동을 능동제어하는 방법을 제안하였다. 구조물의 제어를 위해 LQR 제어알고리즘을 이용하여 구조물의 상태벡터와 제어력을 구한 후, 상태벡터를 입력으로 제어력을 출력으로 하는 인공신경망과 확률신경망의 훈련패턴을 구성하였다. 제안된 방법을 사용하여 Northridge 지진하중을 받는 3층 빌딩구조물을 제어하였고, 제안된 인공신경망과 확률신경망의 제어 결과를 비교하였다.