검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 6

        3.
        2017.05 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Rockfish was a commercially important fish specie in marine ranching areas in Korea. To estimate density and biomass of rockfish using acoustic method, target strength (TS) information is required on the species. This study measured TS dependence on tilt angle and size on 14 live rockfish individuals at 38, 70, and, 120 kHz by ex-situ measurement (tethered method) and acoustic scattering model (Krichhoff ray mode, KRM). The swimbladdered angle ranged from 18 to 30˚ (mean ± s.d. = 26 ± 4˚ ). The mean TS for all individuals was highest -35.9 dB of tilt angle -17˚ at 38 kHz, -35.4 dB of tilt angle -25˚ at 70 kHz, and -34.9 dB of tilt angle -22˚ at 120 kHz. The ex-situ TS-total length (TL, cm) relationships were TS38kHz = 20log10(TL) - 67.1, TS70kHz = 20log10(TL) - 68.6, and TS120kHz = 20log10(TL) - 69.9, respectively. The model TS-total length (TL, cm) relationships were TS38kHz = 20log10(TL) - 66.4, TS70kHz = 20log10(TL) - 67.0, TS120kHz = 20log10(TL) - 67.0. The two measurements between the ex-situ TS and KRM model for TS-tilt angle and fish size were found to be significantly correlated.
        4,000원
        5.
        2014.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        ADCPs have been widely used to estimate the dynamic characteristics and biomass of sound scattering layers (SSLs), and swimming speed of fish schools for analyzing SSLs spatial distribution and/or various behavior patterns. This result showed that the verification of the mean volume backscattering strength (MVBS or averaged SV, dB) acquired by the ADCP would be necessary for a quantitative analysis on the spatial distribution and the biomass estimation of the SSLs or fish school when ADCP is used for estimating their biomass. In addition, the calibrated sphere method was used to verify values of each MVBS obtained from 4 beams of ADCP (153.6 kHz) on the base of 3 frequencies (38, 120, 200 kHz) of Scientific echo sounder's split beam system. Then, the measured SV values were compared and analyzed in its Target Strength (TS, dB) values estimated by a theoretical acoustic scattering model.
        4,000원
        6.
        2022.01 KCI 등재 서비스 종료(열람 제한)
        In this study, surface particulate matter (PM2.5) concentrations were calculated based on empirical equations using measurements of ceilometer backscatter intensities and meteorological variables taken over 19 months. To quantify the importance of meteorological conditions on the calculations of surface PM2.5 concentrations, eight different meteorological conditions were considered. For each meteorological condition, the optimal upper limit height for an integration of ceilometer backscatter intensity and coefficients for the empirical equations were determined using cross-validation processes with and without considering meteorological variables. The results showed that the optimal upper limit heights and coefficients depended heavily on the meteorological conditions, which, in turn, exhibited extensive impacts on the estimated surface PM2.5 concentrations. A comparison with the measurements of surface PM2.5 concentrations showed that the calculated surface PM2.5 concentrations exhibited better results (i.e., higher correlation coefficient and lower root mean square error) when considering meteorological variables for all eight meteorological conditions. Furthermore, applying optimal upper limit heights for different weather conditions revealed better results compared with a constant upper limit height (e.g., 150 m) that was used in previous studies. The impacts of vertical distributions of ceilometer backscatter intensities on the calculations of surface PM2.5 concentrations were also examined.