검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

분야

    발행연도

    -

      검색결과 4

      1.
      2023.05 구독 인증기관·개인회원 무료
      In this study, we evaluate artificial neural network (ANN) models that estimate the positions of gamma-ray sources from plastic scintillating fiber (PSF)-based radiation detection systems using different filtering ratios. The PSF-based radiation detection system consists of a single-stranded PSF, two photomultiplier tubes (PMTs) that transform the scintillation signals into electric signals, amplifiers, and a data acquisition system (DAQ). The source used to evaluate the system is Cs-137, with a photopeak of 662 keV and a dose rate of about 5 μSv/h. We construct ANN models with the same structure but different training data. For the training data, we selected a measurement time of 1 minute to secure a sufficient number of data points. Conversely, we chose a measurement time of 10 seconds for extracting time-difference data from the primary data, followed by filtering. During the filtering process, we identified the peak heights of the gaussian-fitted curves obtained from the histogram of the time-difference data, and extracted the data located above the height which is equal to the peak height multiplied by a predetermined percentage. We used percentage values of 0, 20, 40, and 60 for the filtering. The results indicate that the filtering has an effect on the position estimation error, which we define as the absolute value of the difference between the estimated source position and the actual source position. The estimation of the ANN model trained with raw data for the training data shows a total average error of 1.391 m, while the ANN model trained with 20%-filtered data for the training data shows a total average error of 0.263 m. Similarly, the 40%-filtered data result shows a total average error of 0.119 m, and the 60%-filtered data result shows a total average error of 0.0452 m. From the perspective of the total average error, it is clear that the more data are filtered, the more accurate the result is. Further study will be conducted to optimize the filtering ratio for the system and measuring time by evaluating stabilization time for position estimation of the source.
      3.
      2017.05 구독 인증기관·개인회원 무료
      최근 국내외에서는 수질안정성 향상 및 부지면적 저감을 위해 막여과 공정도입이 활발한 추세이며 특히, 정수처리 분야에서는 정밀여과(Microfiltration) 및 한외여과(Ultrafiltration) 공정이 많이 적용되고 있다. 막여과 공정의 경제성 향상을 위해서는 세정 시점의 예측 및 세정 주기 연장이 매우 중요한 요소이다. 따라서, 본 연구에서는 인공신경망(Artificial neural network)을 활용하여 UF 공정차압(Transmembrane pressure) 예측 모델을 개발하고자 한다. 입력변수로는 유입수 온도, pH, 탁도 등의 일평균값을 이용하였다.
      4.
      2016.10 KCI 등재 서비스 종료(열람 제한)
      본 연구에서는 기상학적 가뭄지수인 표준강수지수(Standardized Precipitation Index, SPI)를 이용하여 우리나라 전역에 대한 가뭄예측의 시공 간적인 평가를 수행하였다. 또한 다층 퍼셉트론 인공신경망(Multi Layer Perceptron-Artificial Neural Network, MLP-ANN) 예측 기법을 이용 하여 SPI(3), (6)에 대한 선행예보시간별 가뭄 예측을 실시하였다. 입력 자료는 기상청 산하의 59개 관측소에서 관측된 기상자료를 활용하였고, 관 측자료 기간은 1976~2015년이다. 예측 모델의 성능평가는 기준점(Threshold)에 따른 가뭄 발생유무와 같은 이진분류 혼동행렬을 구성하여 Receiver Operating Characteristics (ROC) score와 조건부 확률에 따른 F score를 산정하여 예측 성능평가를 수행하였다. 예측성능에 대한 ROC 분석결과 다층 퍼셉트론 인공신경망(MLP-ANN) 모형을 적용한 가뭄예측성능이 매우 우수한 것으로 나타났으며, SPI (3)은 2개월, SPI (6)는 5개월 정도의 선행예측이 충분히 가능한 것으로 나타났다.