This research explores how imported automobile companies can develop their strategies to improve the outcome of their recalls. For this, the researchers analyzed patterns of recall demand, classified recall types based on the demand patterns and examined response strategies, considering plans on how to procure parts and induce customers to visit workshops, recall execution capacity and costs. As a result, recalls are classified into four types: U-type, reverse U-type, L- type and reverse L-type. Also, as determinants of the types, the following factors are further categorized into four types and 12 sub-types of recalls: the height of maximum demand, which indicates the volatility of recall demand; the number of peaks, which are the patterns of demand variations; and the tail length of the demand curve, which indicates the speed of recalls. The classification resulted in the following: L-type, or customer-driven recall, is the most common type of recalls, taking up 25 out of the total 36 cases, followed by five U-type, four reverse L-type, and two reverse U-type cases. Prior studies show that the types of recalls are determined by factors influencing recall execution rates: severity, the number of cars to be recalled, recall execution rate, government policies, time since model launch, and recall costs, etc. As a component demand forecast model for automobile recalls, this study estimated the ARIMA model. ARIMA models were shown in three models: ARIMA (1,0,0), ARIMA (0,0,1) and ARIMA (0,0,0). These all three ARIMA models appear to be significant for all recall patterns, indicating that the ARIMA model is very valid as a predictive model for car recall patterns. Based on the classification of recall types, we drew some strategic implications for recall response according to types of recalls. The conclusion section of this research suggests the implications for several aspects: how to improve the recall outcome (execution rate), customer satisfaction, brand image, recall costs, and response to the regulatory authority.
이 논문은 국내 한육우 사육두수를 시계열 모형인 ARIMA 모형을 이용하여 추정하였다. 소의 생리학적 특성을 반영하기 위하여 한육우 사육두수를 총 여섯 개의 범주(4개의 도축률과 2개의 출생률)로 나누었다. 이 여섯 가지 범주에 대해 ARIMA 모형을 적용하여 Box-Jenkins 절차에 따라 그 값들을 추정하고 예측하였다. 큰암소도축률과 큰수소도축률은 단위근을 갖는 불안정시계열로 나타나 차분하여 안정화시키고 나머지 4개의 변수들은 안정시계열로 나타나 그대로 모형의 식별, 추정 그리고 예측에 사용하였다. 분석결과, 한육우 사육두수는 2012년을 최고점으로 점점 감소하다가 2018년을 최저점으로 다시 증가할 것 으로 분석되었다.
컨테이너항만의 물동량 예측은 항만의 개발 및 운영계획을 위해 매우 중요한 과정이다. 일반적으로 회귀분석, ARIMA모형 등의 통계적 방법론을 통해 많은 예측이 이뤄져왔다. 최근의 연구에서는 인공 신경망(ANN)기법을 통한 예측이 이뤄지고 있으며 기존의 선형적인 기법을 대신하고 있다. 본 연구에서는 선형모형과 비선형모형에 강점이 있는 ARIMA모형과 신경망모형을 결합해 보다 효과적인 예측 모형을 개발하고자 한다. 실제 항만의 과거 자료를 통해 모델의 적합성을 측정하였고 항만의 특성에 따라 모형의 적합성이 다양하게 나타났다.
This study was carried out to develop the stream water quality model for the intaking station of Kongju waterworks in the Keum River system. The monthly water quality(total nitrogen and total phosphorus) with periodicity and trend were forecasted by multiplicative ARIMA models and then the applicability of the models was tested based on 7 years of the historical monthly water quality data at Kongju intaking site. The parameter estimation was made with the monthly observed data. The last one year data was used to compare the forecasted water quality by ARIMA model with the observed one. The models are ARIMA(2,0,0)×(0,1,1)_12 for total nitrogen, ARIMA(0,1,1)×(0,1,1)_12 for total phosphorus. The forecasting results showed a good agreement with the observed data. It is implying the applicability of multiplicative ARIMA model for forecasting monthly water quality at the Kongju site.
수돗물, 송배수펌프의 운전 등 상수도시설을 합리적인 운용을 위해서는 일, 또는 시간 단위의 급수량 사용량의 추정이 필수적이다고 할 수 있다. 급수량의 추정방식은 회귀모형식 및 시계열 분석방법이 있는데, 본 연구에서는 시계열 분석방법인 ARIMA모형을 이용하여 일일 급수량을 추정하였으며 연구대상 지역으로는 광주광역시를 선정하였다. 일일 급수량을 추정하는데 있어서 시계열장을 15, 30. 60, 90일로 나누어 각각의 시계열장에 대해 시행착오법으로 각 모형