검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 9

        1.
        2023.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The purpose of this research is to investigate the statistical behavior of fatigue crack propagation(FCP) in magnesium alloy AZ31. FCP tests have been performed on compact specimens of AZ31 at load ratio conditions and maximum fatigue load conditions to obtain statistical data of FCP. It was found that the variability of fatigue crack propagation rate was significantly large at initial stage of FCP and gradually became smaller as the fatigue crack propagated. The finding of the study showed that increasing the load ratio could increase the variability of fatigue crack propagation rate at initial FCP stage. The samller the load ratio, the higher the fatigue crack propagation rate at initial stage. It was also found that the load ratio is a factor affecting the fatigue crack propagation rate in magnesium alloy.
        4,000원
        2.
        2022.06 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        This study explored the possibility of forming a coating layer containing alginic acid on the surface of a magnesium alloy to be used as a biomaterial. We formed a coating layer on the surface of a magnesium alloy using a plasma electrolytic oxidation process in an electrolytic solution with different amounts of alginic acid (0 g/L ~ 8 g/L). The surface morphology of all samples was observed, and craters and nodules typical of the PEO process were formed. The cross-sectional shape of the samples confirmed that the thickness of the coating layer became thicker as the alginic acid concentration increased. It was confirmed that the thickness and hardness of the sample significantly increase with increasing alginic acid concentration. The porosity of the surface and cross section tended to decrease as the alginic acid concentration increased. The XRD patterns of all samples revealed the formation of MgO, Mg2SiO4, and MgF2 complex phases. Polarization tests were conducted in a Stimulate Body Fluid solution similar to the body's plasma. We found that a high amount of alginic acid concentration in the electrolyte improved the degree of corrosion resistance of the coating layer.
        4,000원
        3.
        2022.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The objectives of this paper are to evaluate the factors affecting the fatigue crack propagation(FCP) behavior in AZ31 magnesium alloy. FCP experiments have been performed on the specimens of AZ31 magnesium alloy under various conditions such as a loading frequency, a specimen thickness, a maximum fatigue load, and a load ratio and the obtained results were analyzed to find the influence factors on the FCP behavior in magnesium alloy. It is necessary to consider the influence factors for the design and the maintenance of lightweight structures. The correlation between the crack growth rate exponent and the crack growth rate coefficient, which are FCP behavior parameters, was also analyzed and the regression model was presented.
        4,000원
        4.
        2020.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this paper, graphene-coated Al powders prepared by in situ reduction method were directly used for cold spraying, obtaining a graphene-reinforced Al matrix composite coating with more compact structure and better performance. Cross-sectional analysis revealed that compared with the pure Al powders, the graphene-coated Al powders were more severely deformed, and the resulting coating was denser and its porosity was reduced by over 80%. The hardness of the graphene-coated Al coating was increased by 40%, and its brine immersion time was prolonged by nearly three times. However, the graphene increases the pitting sensitivity of the Al coating; so, the enhanced corrosion resistance of the graphene-coated Al coating is mainly attributed to the improvement of its structure densification.
        3,000원
        5.
        2019.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Recently magnesium alloy sheet has been used as a lightweight material in transportation area. Warm forming is a forming method that improves formability and reduces springback. The magnesium alloy sheet has a characteristic that large difference of flow stress increases depending on strain rate at high temperature. These characteristics cause low dimensional accuracy of formed products. In this study, experiments were performed on the 2D-draw bending with respect to the temperature and forming speed in order to investigate the effects of strain rate and temperature. It was found that as the temperature increases, spinrgback of 2D-draw bending decreased and formability of AZ31B increased. Additionally, the effect of the punch speed was investigated. At 250°C, as the punch speed increased, the springback of 2D-draw bending decreased.
        4,000원
        7.
        2011.06 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Melt foaming method is one of cost-effective methods to make metal foam and it has been successfully applied to fabricate Mg foams. In this research, AZ31 Mg alloy ingot was used as a metal matrix, using AlCa granular as thickening agent and CaCO3 powder as foaming agent, AZ31 Mg alloy foams were fabricated by melt-foaming method at different foaming temperatures. The porosity was above 41.2%~73.3%, pore size was between 0.38~1.52 mm, and homogenous pore structures were obtained. Microstructure and mechanical properties of the AZ31 Mg alloy foams were investigated by optical microscopy, SEM and UTM. The results showed that pore structure and pore distribution were much better than those fabricated at lower temperatures. The compression behavior of the AZ31 Mg alloy foam behaved as typical porous materials. As the foaming temperature increased from 660˚C to 750˚C, the compressed strength also increased. The AZ31 Mg alloy foam with a foaming temperature of 720˚C had the best energy absorption. The energy absorption value of Mg foam was 15.52 MJ/m3 at a densification strain of 52%. Furthermore, the high energy absorption efficiencies of the AZ31 Mg alloy foam kept at about 0.85 in the plastic plateau region, which indicates that composite foam possess a high energy absorption characteristic, and the Vickers hardness of AZ31 Mg alloy foam decreased as the foaming temperature increased.
        4,000원
        9.
        1999.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, the characteristics of gas atomized Mg-3wt%Al-1wt%Zn-1wt%MM alloy powders under vacuum condition were investigated. In spite of the low fluidity and easy oxidation of the molten magnesium, the spherical powders could be successfully produced by using a modified three pieces nozzle attached to the gas atomization unit. It was found that most of the solidified powders less than 50m in diameter were single crystal and the solidified structure showed a typical dendritic morphology due to supercooling prior to nucleation. The secondary dendrite arm spacing decreased as the size of powders decreased. The Mg-Al-Ce intermetallic compounds with chemically stable phase were found in the interdendritic regions of -Mg. It is considered that formation of the chemically stable phase may possibly affect to improve the corrosion resistance. Therefore, it is expected that the materials formed of these Mg-Al-Zn-MM alloy powders shows better mechanical properties and corrosion resistance due to the structural refinement.
        4,000원