검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 43

        1.
        2024.01 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Korean historical literatures offer numerous records on astronomical phenomena such as eclipses, comets, and close approaches, etc. Records of close approaches often use specific terms to describe the angular distance, which lack translation into modern numerical values. We study the usage of the five commonly used terms, namely, Entry (入, En), Invasion (犯, In), Occultation (掩, Oc), Eclipse (食, Ec), as well as the unit Chi (尺). Our analysis is based on more than 2,300 records from Goryeo (918–1392 CE) and Joseon (1392–1910 CE) Dynasties. Through statistical analysis, we determine their quantitative definitions. We convert the lunisolar calendar to the Julian and Gregorian date and utilize the modern ephemeris DE431 to calculate the angular distance between celestial bodies. We find that the angular distances of the terms En, In, Oc, and Ec correspond to respectively 1.78◦+2.36 −1.11, 0.89◦+3.54 −0.51, 0.44◦+1.15 −0.31, and 0.29◦+2.61 −0.16 for the Goryeo Dynasty and 1.36◦+1.15 −0.64, 0.51◦+1.11 −0.32, 0.25◦+0.27 −0.17, and 0.21◦+0.25 −0.11 for the Joseon Dynasty. Additionally, we determine the angular size of the unit Chi by using the records from Korean chronicles along with the drawings of comets’ tails in the Daily Log (天變謄錄). We estimate the unit Chi to be 1.11◦+0.46 −0.40 and find that the numerical definition was consistent throughout the two dynasties in Korea. Furthermore, we find that the terms were used to describe the closest approach and that there is no observational bias in the angular distances against the apparent magnitudes of the objects. We show that the terms En, In, Oc, and Ec represent decreasing angular distance in that order and this ordering was consistent in both dynasties.
        4,000원
        5.
        2022.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The nonlinear simple pendulum is investigated to find the exact closed-form analytical solution, satisfying initial conditions of angular position and angular velocity. While previous numerous studies have been conducted on the nonlinear simple pendulum, the exact closed-form analytical solution still remains not available in public domain for the most general initial condition including initial angular velocity as well as initial angular displacement. In this paper, the exact closed-form analytical solution for the general initial conditions is derived using Jacobi’s elliptic function and elliptic integral. The result was verified by comparing it with previous studies and the numerical solution of the equation of motion through the Runge-Kutta integration method.
        4,000원
        6.
        2022.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study was evaluated based on the items of KS B 6389. The study on the calculation of angular error and measurement uncertainty of HRc hardness measurement using statistical techniques using Rockwell measurement specimens with different hardness values ​​was analyzed, and the results were derived according to the change in the angle of the indenter part of the hardness tester and the specimen. As a result of the experiment, the test statistic P values ​​for angle changes such as 0°, 1°, and 2° were all 0.000 using the HRc 30 and 40 measurement specimens, so it was confirmed through the experiment that a significant difference occurred between them. In addition, the extended uncertainty value was calculated as 0.612 at the 95.45% confidence level, and the fact that the hardness test value came out smaller than the existing test value as the inclination angle increased was verified through experiments.
        4,000원
        7.
        2022.10 구독 인증기관·개인회원 무료
        When the nuclear accident like the Fukushima is occurred, it is required to immediately determine the location of radioactive materials and their activities. Various studies related the unmanned technique to detect and characterize the contaminated area have been conducted. The Korea Institute of Nuclear Nonproliferation and Control (KINAC) has developed a new gamma detection system which consists of nine probes using a silicon photomultiplier (SiPM) and plastic scintillator. The probe is the small gamma detector designed to be carried and dropped near the accident area by the unmanned aerial vehicle. In this paper, we developed the improved design related to the angular dependence of the radioactive contamination detection system with the purpose of increasing the detection efficiency. The detection efficiency, radiation shielding and back-scattering varies depending on the direction of incidence of radiation because the probe has vertical structure of consisting scintillator, photomultiplier, and electric circuits. That is, when the experimental conditions are same except the direction of gamma probe, the result of measurements is different. It causes errors in measuring the radioactivity and location of the radioactive source. Since the direction of the probe is arbitrarily determined during the deployment of the probe through the unmanned aerial vehicle, it is considered changing the design of the scintillator from a conventional 1.0" × 1.0" Φ cylindrical shape to a 1.0" Φ spherical shape. In case of using the spherical scintillator, it is confirmed that angular dependence was reduced through MCNP simulation. The difference in the measurement depending on the direction of the probe could be reduced through additional structure design. Finally, we hope that the developed detection system which has the probes with spherical shape of scintillator can measure the radioactivity and location of the radioactive source in a range of about 100 × 100 m2 by measuring for at least 5 minutes. The field test at Fukushima area will be carried out with JAEA members in order to prove the feasibility of the new system.
        13.
        2016.09 KCI 등재후보 구독 인증기관 무료, 개인회원 유료
        A 4-month-old intact male, Siberian husky dog, weighing 14.6 kg, was initially presented to the Gyeongsang National University Animal Medical Center (GAMC) with a history of bilateral forelimb lameness and angular deformity. Physical examination revealed forelimb lameness and valgus deformities. Radiography showed a conical shaped, radiolucent, thickened and irregular marginated distal growth plate in both distal ulnar physis. Thickening of distal growth plate also was evident at both the distal radial physis, and the presence of osteophytes was observed. A diagnosis of angular deformity was made on the basis of a shortened ulna associated with osteochondrosis. Temporary hemiepiphysiodesis was implemented by surgical insertion of tension band plate. The plates were implanted for 6 weeks. Pre- and post-operative radiographs of both forelimbs were evaluated to determine the angle of frontal plane alignment (FPA) and sagittal plane alignment (SPA) over a 8-week period. FPA was corrected into the normal range in the right forelimb, and SPA was close to the reference range in the both forelimbs. Furthemore, a reduction in osteochondrosis was revealed by radiography. This case report establishes that temporary hemiepiphysiodesis with a tension band plate should be option in dogs with angular deformities during a growing period and is minimally invasive with a lower morbidity than traditional osteotomy. Moreover, this treatment facilitates the resolution of osteochondrosis lesions.
        4,000원
        14.
        2013.04 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        We estimate the power spectra of the cosmic microwave background radiation (CMB) temperature anisotropy in localized regions of the sky using the Wilkinson Microwave Anisotropy Probe (WMAP) 7-year data. We find that the north and south hat regions at high Galactic latitude (|b| ≥ 30°) show an anomaly in the power spectrum amplitude around the third peak, which is statistically significant up to 3. We try to explain the cause of the observed anomaly by analyzing the low Galactic latitude (|b| < 30°) regions where the galaxy contamination is expected to be stronger, and the regions weakly or strongly dominated byWMAP instrument noise. We also consider the possible effect of unresolved radio point sources. We find another but less statistically significant anomaly in the low Galactic latitude north and south regions whose behavior is opposite to the one at high latitude. Our analysis shows that the observed north-south anomaly at high latitude becomes weaker on regions with high number of observations (weak instrument noise), suggesting that the anomaly is significant at sky regions that are dominated by the WMAP instrument noise. We have checked that the observed north-south anomaly has weak dependences on the bin-width used in the power spectrum estimation, and on the Galactic latitude cut. We also discuss the possibility that the detected anomaly may hinge on the particular choice of the multipole bin around the third peak. We anticipate that the issue of whether or not the anomaly is intrinsic one or due to WMAP instrument noise will be resolved by the forthcoming Planck data.
        5,100원
        15.
        2012.09 KCI 등재 구독 인증기관·개인회원 무료
        We present the first measurement of the angular two-point correlation function for AKARI 90μm point sources, detected outside of the Milky Way plane and selected as candidates for extragalactic sources. This is the first measurement of the large-scale angular clustering of galaxies selected in the far-infrared after IRAS. We find a positive clustering signal in both hemispheres extending up to ~ 40 degrees, without any significant fluctuations at larger scales. The observed correlation function is well fitted by a power law function. However, southern galaxies seem to be more strongly clustered than northern ones and the difference is statistically significant. The reason for this difference - technical or physical - is still to be found.
        16.
        2011.09 구독 인증기관 무료, 개인회원 유료
        본 논문에서는 산업 현장에서 비전기술을 이용한 객체의 검사나 분류에 사용되는 빠르고 효율적인 최소 사각형 근사화 방법을 대해서 소개한다. 주어진 객체의 최소 사각형 근사를 위해서 객체의 전체 외곽선을 사용하지 않고 n 개로 샘플링된 에지 점들에 대해서만 각도 히스토그램을 생성하고 이를 이용하여 객체의 장축과 단축을 계산한다. 최종 근사 사각형을 찾기 위해 이전 단계에서 얻어진 장축과 단축을 중심으로 하는 4개의 모서리점을 갖는 사각형을 찾는다. 이후에, 잡음에 의한 오차를 줄이기 위해 첫 번째 사각형의 각도를-1∼+1로 변형하여 추가적으로 2개의 후보 사각형을 생성한 후, 3개의 추정된 사각형과 원본 영상의 외곽선의 매칭 정도를 측정하여 오류가 최소화 되는 사각형을 최종 사각형 영역으로 선택한다. 제안된 방법을 몇 개의 실험데이터에 대해 실험한 결과 기존의 방법에 비해 빠르고 효율적인 최소 사각형 근사가 가능하였다.
        4,000원
        17.
        2009.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Magnesium and its alloys are attractive as light weight structural/functional materials for high performance application in automobile and electronics industries due to their superior physical properties. In order to obtain high quality products manufactured by the magnesium powders, it is important to control and understand the densification behavior of the powders. The effect of the sheath surrounding the magnesium powders on the plastic deformation and densification behavior during equal channel angular pressing was investigated in the study by experimental and the finite element methods. A modified version of Lee-Kim's plastic yield criterion, notably known as the critical relative density model, was applied to simulate the densification behavior of magnesium powders. In addition, a new approach that extracts the mechanical characteristics of both the powder and the matrix was developed. The model was implemented into the finite element method, with which powder compaction under equal channel angular pressing was simulated.
        4,000원
        18.
        2008.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, bottom-up powder processing and top-down severe plastic deformation processing approaches were combined in order to achieve both full density and grain refinement with least grain growth. The numerical modeling of the powder process requires the appropriate constitutive model for densification of the powder materials. The present research investigates the effect of representative powder yield function of the Shima-Oyane model and the critical relative density model. It was found that the critical relative density model is better than the Shima-Oyane model for powder densification behavior, especially for initial stage.
        4,000원
        19.
        2008.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Aluminum alloys are not only lightweight materials, but also have excellent thermal conductivity, electrical conductivity and workability, hence, they are widely used in industry. It is important to control and enhance the densification behavior of metal powders of aluminum. Investigation on the extrusion processing combined with equal channel angular pressing for densification of aluminum powders was performed in order to develop a continuous production process. The continuous processing achieved high effective strain and full relative density at . Optimum processing conditions were suggested for good mechanical properties. The results of this simulation helped to understand the distribution of relative density and effective strain.
        4,000원
        20.
        2008.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, the bottom-up powder metallurgy and the top-down severe plastic deformation (SPD) techniques for manufacturing bulk nanomaterials were combined in order to achieve both full density and grain refinement without grain growth of rapidly solidified Al-20 wt% Si alloy powders during consolidation processing. Continuous equal channel multi-angular processing (C-ECMAP) was proposed to improve low productivity of conventional ECAP, one of the most promising method in SPD. As a powder consolidation method, C-ECMAP was employed. A wide range of experimental studies were carried out for characterizing mechanical properties and microstructures of the ECMAP processed materials. It was found that effective properties of high strength and full density maintaining nanoscale microstructure are achieved. The proposed SPD processing of powder materials can be a good method to achieve fully density and nanostructured materials.
        4,000원
        1 2 3