검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 2

        2.
        2016.11 KCI 등재 서비스 종료(열람 제한)
        For articulated swimming robots, there have been no researches about controlling the motion or trajectory following. A control method for articulated swimming robot is suggested by extending a previous algorithm, ESPG (Extended Swimming Pattern Generator). The control method focuses on the situation that continuous pre-determined swimming pattern is applied for long range travelling. In previous studies, there has not been a way to control the propulsive force when a swimming pattern created by ESPG was in progress. Hence, no control could be made unless the swimming pattern was completed even though an error occurred while the swimming pattern was in progress. In order to solve this problem, this study analyzes swimming patterns and suggests a method to control the propulsive force even while the swimming pattern was in progress. The angular velocity of each link is influenced and this eventually modifies the propulsive force. However, The angular velocity is changed, a number of problems can occur. In order to resolve this issue, phase compensation method and synchronization method were suggested. A simple controller was designed to confirm whether the suggested methods are able to control and a simulation has affirmed it. Moreover, it was applied to CALEB 10 (a biomimetic underwater articulated robot) and the result was verified.