검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 3

        1.
        2017.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, we analyzed the factors affecting the concentration of airborne asbestos fiber in the indoor and outdoor environment of a slate roofing house, and performed a health risk assessment of residents living in houses with slate roofs. Sampling was conducted at ten houses with slate roofs on 3 different days under different weather conditions. A high flow rate pump was used for sampling. The specimen was assessed using a phase-contrast microscope. The degree of risk of exposure to asbestos was assessed using EPA’s carcinogen risk assessment method. Asbestos fiber concentrations for slate roofing houses were 2.43 fiber/L inside and 2.46 fiber/L outside, respectively. The correlation between the indoor and outdoor asbestos fiber concentration was 0.486. But on both sides, the asbestos fiber concentrations did not exceed the standard (10 fiber/L) for ambient air in Korea. The factors affecting the concentration of asbestos fiber were year of construction (p<0.05), total roof area (p<0.05) and average wind velocity (p<0.01). According to EPA’s ELCR (Excess Lifetime Cancer Risk) on air pollution substances, a level of 1.0E-04~1.0E-06 should be maintained. However, the ELCR level of 6 out of 10 houses was over 1.0E-04. Therefore, a risk management plan for residents of slate roofing houses must be prepared immediately.
        4,000원
        2.
        2014.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The research on the actual condition of indoor asbestos concentration in Korea has not been thoroughly accomplished up to now. In this research the ratio of asbestos-containing buildings and indoor asbestos concentration was studied. This investigation was conducted in 2012 and 2013 and buildings were categorized based on region, building type by use, existing space(ground or basement), and construction year, respectively. Also the indoor asbestos concentration change was monitored to evaluation the efficiencies of two types of asbestos-concentration abatement devices.As a result, the ratio of asbestos-containing buildings in Seoul was largely decreased. The ratio of asbestos-containing buildings was higher in hospitals and schools regionally and in ground buildings than in basement. The average indoor asbestos concentrations were 0.0011, 0.0008 piece/cc in 2012 and 2013 investigation, respectively. Those values were much lower than standards(0.01 piece/cc), therefore the threat of indoor asbestos concentration might be negligible. In asbestos-concentration abatement experiments, the circulation velocity of ventilator were changed 2-6.7 m/sec. With 6.7 m/sec of velocity of ventilator, the concentration of indoor asbestos was fluctuated and maximum value was 2.4 piece/cc. With 4.5 and 2 m/sec of velocities of ventilator, the maximum concentration of indoor asbestos was fluctuated and maximum value was 0.9 piece/cc. This indicated that the concentration of indoor asbestos was decreased partly due to the free drop of asbestos. From these results, the proper velocity of ventilator seems to be between 4.7 and 6.5m/sec under this circumstance and further research is required. These research results may be used to guideline of asbestos management policy.
        4,500원
        3.
        2011.12 KCI 등재후보 구독 인증기관 무료, 개인회원 유료
        High-throughput microscopy (HTM) was developed recently for the automatic detection of airborne asbestos fibers that can cause lung cancer, asbestosis and mesothelioma. The HTM method has been applied to couting the airborne asbestos fibers as an alternative to the conventional phase contrast microscopy (PCM). In this paper, we demonstrated that the HTM enabled us to obtain quantitative results for low-concentration airborne asbestos samples under detection limit, and we made a comparison between the results from HTM and PCM. In addition, a verification study was conducted using proficiency analytical testing (PAT) samples of chrysotile and amosite. The HTM method can be applied to the existing PCM method by reducing analysis time and labors. Potential applications can be extended to detection of asbestos fibers in soil and water.
        4,000원