검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 3

        1.
        2017.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study aims to analyze the effects of 4 directions of wind, wind speed, year of construction of slate roofs, installation area and other factors on the concentration and size distribution of airborne fiber particles in farmhouses with a slate roof containing asbestos. Airborne fiber particle samples were collected from the air in six houses with a slate roof containing asbestos using a high flow rate pump (10 L/min) for 2 hours, three times a day with a different condition, 72 times in total. The airborne fiber particle concentrations were measured using a phase contrast microscope, and the size of fiber particles of 72 samples in total was estimated using the mean value of those in each sample measured at 100 with a field of view. The total average concentration of fiber particles collected from in the air in four directions of the targeted farmhouses was 2.83 fiber/L, and its maximum concentration was 5.75 fiber/L, which means that among all samples there was no place that exceeded 10 fiber/L, a recommended indoor air quality standard. The average size of the fiber particles was 11.55 μm, and the maximum size was 40 μm. A multiple regression analysis of factors affecting the concentration and size of fiber particles in the air collected from the farmhouses with a slate roof containing asbestos found that the closer to the main wind direction (p<0.001) and the faster the average wind speed (p<0.05), the fiber particles concentration became significantly higher. In this case, the coefficient of determination was 52.8%. It was also found that the wider the total area of the slate roof (p<0.001) and the slower the average wind speed (p<0.05), the longer the fiber particles; the coefficient of determination for this finding was 19.6%. The concentration of fiber particles in the air of farmhouses with a slate roof appeared to be the highest under the main wind direction, and became significantly higher as the wind speed became faster. This proved that fiber particles were leaked from the slate roof. The size of the fiber particles became significantly longer as the area of the slate roof became wider and the wind speed became slower.
        4,000원
        2.
        2017.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, we analyzed the factors affecting the concentration of airborne asbestos fiber in the indoor and outdoor environment of a slate roofing house, and performed a health risk assessment of residents living in houses with slate roofs. Sampling was conducted at ten houses with slate roofs on 3 different days under different weather conditions. A high flow rate pump was used for sampling. The specimen was assessed using a phase-contrast microscope. The degree of risk of exposure to asbestos was assessed using EPA’s carcinogen risk assessment method. Asbestos fiber concentrations for slate roofing houses were 2.43 fiber/L inside and 2.46 fiber/L outside, respectively. The correlation between the indoor and outdoor asbestos fiber concentration was 0.486. But on both sides, the asbestos fiber concentrations did not exceed the standard (10 fiber/L) for ambient air in Korea. The factors affecting the concentration of asbestos fiber were year of construction (p<0.05), total roof area (p<0.05) and average wind velocity (p<0.01). According to EPA’s ELCR (Excess Lifetime Cancer Risk) on air pollution substances, a level of 1.0E-04~1.0E-06 should be maintained. However, the ELCR level of 6 out of 10 houses was over 1.0E-04. Therefore, a risk management plan for residents of slate roofing houses must be prepared immediately.
        4,000원
        3.
        2013.12 KCI 등재 서비스 종료(열람 제한)
        This study was performed to evaluate the asbestos exposure levels and to calculate excess lifetime cancer risk (ELCR) for the risk assessment of the asbestos fibers released from asbestos-cement slate roofing (ASR) building. Total number of ASR buildings was into 21,267 in Busan, and 82.03 percent of the buildings was residential houses, and 43.61 percent of the buildings was constructed in 1970s. For this study, ten buildings were selected randomly among the ASR buildings. The range of airborne asbestos concentration in the selected ten ASR buildings was from 0.0016 to 0.0067 f/mL, and the concentration around no-admitted ASR buildings was higher than that around admitted buildings. The ELCR based on US EPA IRIS (integrated risk information system) model is within 3.5E-05 ~ 1.5E-04 levels, and the ELCR of no-admitted ASR buildings was higher than 1.0E-04 (one person per million) level that is considered a more aggressive approach to mitigate risk. These results indicate that the cancer risk from ASR buildings is higher than other buildings, and systematic public management is required for control of no-admitted ASR buildings within near future.