This study was performed to evaluate the asbestos exposure levels and to calculate excess lifetime cancer risk (ELCR) for the risk assessment of the asbestos fibers released from asbestos-cement slate roofing (ASR) building. Total number of ASR buildings was into 21,267 in Busan, and 82.03 percent of the buildings was residential houses, and 43.61 percent of the buildings was constructed in 1970s. For this study, ten buildings were selected randomly among the ASR buildings. The range of airborne asbestos concentration in the selected ten ASR buildings was from 0.0016 to 0.0067 f/mL, and the concentration around no-admitted ASR buildings was higher than that around admitted buildings. The ELCR based on US EPA IRIS (integrated risk information system) model is within 3.5E-05 ~ 1.5E-04 levels, and the ELCR of no-admitted ASR buildings was higher than 1.0E-04 (one person per million) level that is considered a more aggressive approach to mitigate risk.
These results indicate that the cancer risk from ASR buildings is higher than other buildings, and systematic public management is required for control of no-admitted ASR buildings within near future.
This study was performed to evaluate the asbestos exposure levels and to calculate excess lifetime cacer risks(ELCRs) in asbestos-containing buildings for maintenance and management. The range of airborne asbestos concentration of 33 buildings was 0.0018 ~ 0.0126 f/cc and one site exceeded indoor air-quality recommended limit 0.01 f/cc. And ELCRs based on US EPA IRIS(Integrated risk information system) model are 1.5E-06 ~ 3.9E-05 levels, and there was no site showed 1.0E-04 (one person per million) level or more, and 11 sites showed 1.0E-05 (one person per 100,000 people) level or more. To prevent the release of asbestos fibers, it needs operation and maintenance of asbestos-containing building materials, and there are some methods such as removal, repairment, enclosure and encapsulation. In conclusion, a risk-based air action level for asbestos in air is an appropriate metric for asbestos-containing building management.
Nitrate contamination of water environments can create serious problems such as eutrophication of rivers. Conventional biological processes for nitrate removal by heterotrophic denitrification often need additional organic substrates as carbon sources and electron donors. We tried to accelerate biological denitrification by using bioelectrochemical reactor (BER) in which electrode works as an electron donor. Denitrification activity of 8 environmental samples from various sediments, soils, groundwaters, and sludges were tested to establish an efficient enrichment culture for BER. The established enrichment culture from a soil sample showed stable denitrification activity without any nitrite accumulation. Microbial community analysis by using PCR-DGGE method revealed that dominant denitrifiers in the enrichment culture were Pantoea sp., Cronobacter sakazakii, and Castellaniella defragrans. Denitrification rate (0.08 kg/m3·day) of the enrichment culture in BER with electrode poised at -0.5 V (vs Ag/AgCl) was higher than that (2.1×10-2kg/m3·day) of BER without any poised potential. This results suggested that biological denitrification would be improved by supplying potential throughout electrode in BER. Further research using BER without any organic substrate addition is needed to apply this system for bioremediation of water and wastewater contaminated by nitrate.
The textile remains have been affected largely by environmental factors including microorganisms because they were composed of organic compounds to be easy to damage. So, we selected 8 strains of the 131 isolated strains from museum environments and textile remains by high protease activity, and identified them for measuring the antibacterial activity of Gingko biloba extracts. They were identified Genus Arthrobacter spp. 3 strains (Arthrobacter nicotiannae A12, Arthrobacter sp B12, Arthrobacter oxidans B13), Genus Bacillus spp. 2 strains (Bacillus licheniformis D9, Bacillus cereus D33), Genus Pseudomonas spp. 2 strains (Pseudomonas putida A24, Pseudomonas fluorescene C21) and a Genus Staphylococcus sp. 1 strain (Staphylococcus pasteuri D3) as closest strains through the blast search of NCBI. Though antibacterial activity of the extracts of Gingko biloba leaves as MIC was lower than that of other pharmaceutical antibiotics. However the extracts was crude extracts, the extracts might have good antibacterial against most of the isolates from museum. Especially, the antifungal activity of Gingko biloba is known previously, the extracts of Gingko biloba leaves has possibility of usage as a good natural material for conservation of remains.
From sludge of S municipal wastewater treatment plant in Busan, Korea, we isolated the denitrifier DN-9 which showed the ability of denitrification under aerobic condition by the color change and gas formation in liquid culture with Giltay medium. The isolated strain was identified as Pseudomonas sp. DN-9 on the basis of the morphological, physiological, biochemical and nucleotide sequence analysis of 16S rRNA. The isolated strain, Pseudomonas sp. DN-9, has cytochrome cd1 nirS of nitrite reductase. By the co-existance of additional ammonium and nitrate ion, the strain was not affected largely on growth in SL series broth. It seemed the result of denitrification. Although Pseudomonas sp. DN-9 has a good nitrate reduction activity under aerobic condition, the activity is less than Pseudomonas stutzeri in same cultivation condition. However, Escherichia coli had little the activity of aerobic denitrification and Pseudomonas putida showed lower activity of aerobic denitrification than Pseudomonas sp. DN-9 and Pseudomonas stutzeri in this study.
A species of facultative photo-organotrophic, purple, non-sulfur bacterium was isolated from the 47 point at west and south coast of Korea in September 2001. Separated 13 samples of changes with red color under 28~32 ℃, 3000 lux, anaerobe conditions for 7 days cultivated in basal medium. For pure isolation from 13 samples, we used agar-shake tube method (0.4 % agar) and separated 5 strains through 13-repetition test. EGH-24 and EGH-30 was identified as the same strain through the RAPD(Random Amplified Polymorphic DNA)-PCR of strain EGH-9, EGH-13, EGH-23, EGH-24, EGH-30. Four isolates cultivated in synthesis wastewater for wastewater biodegradation test. EGH-24 was selected with efficient wastwater treating strain. Based on the results obtained from morphology, nutrient requirements, major bacteriochlorophyll content, 16S-rDNA phylogenetic analysis, EGH-24 strain may be identified as a new strain of the genus Rhodobacter and named Rhodobacter sp. EGH-24.
The isolated strain, Rhodococcus sp. EL-GT was able to degrade high phenol concentrations up to 10 mM within 24 hours in the medium consisting of 5.3 mM KH2PO4, 95 mM Na2HPO4, 18mM NH4NO3, 1mM MgSO4·7H2O, 50μM CaCl2, 0.5μM FeCl3, initial pH8.0, temperature 30℃ in rotary shaker at 200rpm. This strain was good cell growth and phenol degradation in the alkaline pH range range, and the highest in the pH range of 7 to 9.
The microorganism was able to grow at the various chlorinated phenols, benzene, toluene, and bunker-C oil. As Rhodococcus sp. EL-GT was good capable of attachment on the acryl media, it would be used as microorganism to consist of biofilm in wastewater treatment.
The research was performed to compare to the biofilm characteristics and phenol removal efficiency in RBCs(Rotating Biological Contactor) using Rhodococcus sp. EL-GT(single population) and activated sludge(mixed population) as inoculum. Both reactors showed similar tendency on variations of dry weight, thickness and dry density of biofilm. However, the growth of biofilm thickness in 3 and 4 stage of single population reactor has sustained longer than that of the mixed population reactor. Unlike the mixed population reactor, the dry density of biofilm in the single population reactor had a difference between 1, 2 stage and 3, 4 stage. The single population reactor was stably operated without the decrease of phenol removal efficiency in the range of pH 6~9 and 15mM phenol was completely degraded in these pH ranges. But in case of the mixed population reactor, the phenol degradability was dramatically decreased at over 5mM phenol concentration because of the overgrowth and detachment of its biofilm.
A biosurfactant-producing microorganism was isolated from activated sludge by enrichment culture when grown on a minimal salt medium containing n-hexadecane as a sole carbon source. This microorganism was identified as Pseudomonas sp. and it was named Pseudomonas sp. EL-G527. It's optimal culture condition is 2% n-hexadecane, 0.2% NH4NO3, 0.3% KH2PO4, 0.3% K2HPO4, 0.02% MgSO4ㆍ7H2O, 0.0025% CaCl2ㆍ6H2O, 0.0015% FeSO4ㆍ7H2O in 1ℓ distilled water and initial pH 7.0. Cultivation was initiated with a 2% inoculum obtained from starter cultures grown in 30 ㎖ of the same medium in 250 ㎖ flask. They were cultivated at 30 ℃ in reciprocal shaking incubator and the highest biosurfactant production was observed after 4 days.
The toxicity values of various heavy metals were evaluated by acute immobilization and chronic reproduction impairment tests, using Daphnia magna. Acute tests were evaluated by the inhibition of their mobilization after 24hrs without food addition. The tests of reproductive impairment were investigated for 21 days by food addition and exchange of water. The effect of each concentration was assessed by Probit analysis and t-test.
The results obtained from this study were as follows : 1) The change of pH and DO was not significant in the acute tests, while, in the reproductive tests, pH was increased by 0.3∼1.4 and DO also increased. 2) The EiG50 values of immobilization to Daphnia magna in artificial fresh water were 0.030㎎/ℓ(Cu), 0.054㎎/ℓ(Cd), 0.12㎎/ℓ(Cr), 0.74㎎/ℓ(Pb), 3.4㎎/ℓ(As) and the NOEiC values were 0.010㎎/ℓ(Cu), 0.018㎎/ℓ(Cd), 0.010㎎/ℓ(Cr), 0.10㎎/ℓ(Pb), and 1.8㎎/ℓ(As). 3) The EiC50 values of reproductive impairment to Daphnia magna were 13.8㎍/ℓ(Cu), 2.9㎍/ℓ(Cd), 15.5㎍/ℓ(Cr), 61.7㎍/ℓ(Pb), 759㎍/ℓ(As), and NOErC values were 0.95㎍/ℓ(Cu), 0.54㎍/ℓ(Cd), 1.2㎍/ℓ(Cd), 7.4㎍/ℓ(Pb), 110㎍/ℓ(As).
The results of tests using OECD artificial culture water were more sensitive than natural water for culturing. The presented data show that an artificial culture water is suitable in the experiment of bioassay for assessing the toxicity of materials.