The research was performed to compare to the biofilm characteristics and phenol removal efficiency in RBCs(Rotating Biological Contactor) using Rhodococcus sp. EL-GT(single population) and activated sludge(mixed population) as inoculum. Both reactors showed similar tendency on variations of dry weight, thickness and dry density of biofilm. However, the growth of biofilm thickness in 3 and 4 stage of single population reactor has sustained longer than that of the mixed population reactor. Unlike the mixed population reactor, the dry density of biofilm in the single population reactor had a difference between 1, 2 stage and 3, 4 stage. The single population reactor was stably operated without the decrease of phenol removal efficiency in the range of pH 6~9 and 15mM phenol was completely degraded in these pH ranges. But in case of the mixed population reactor, the phenol degradability was dramatically decreased at over 5mM phenol concentration because of the overgrowth and detachment of its biofilm.
This research was performed to investigate the dynamics of microbial community by RBC (Rotating Biological Contactor) using Rhodococcus sp. EL-GT and activated sludge. Cell counts revealed by DAPI were compared with culturable bacterial counts from nutrient agar. Colony counts on nutrient agar gave values 20∼25% and 1∼15% of cell counts (DAPI). The cell counts for the dynamics of bacterial community were determined by combination of in situ hybridization with fluorescently-labelled oligonucleotide probes and epifluorescence microscopy. Around 90∼80% of total cells visualized by DAPI were also detected by the bacteria probe EUB 338. For both reactors proteobacteria belonging to the gamma subclass were dominant in the first stage (1 and 2 stage) and proteobacteria belonging to the gamma subclass were dominant in the last stage (3 and 4 stage).