검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 7

        3.
        2019.04 구독 인증기관·개인회원 무료
        To verify the progenitor of B. mori, we sequenced 14 B. mori strains preserved in Korea and one B. mandarina collected in Korea and conducted phylogenetic analysis of Bombycidae using maximum-likelihood method and concatenated sequences of 13 PCGs and 2 rRNA genes. All B. mori strains, regardless of their origin, formed a strong monophyletic group, with the highest nodal support. This B. mori group was placed as the sister to the two B. mandarina collected each from Korea and Shandong, China with the highest nodal support. Finally, the remaining two B. mandarina, which were collected in Japan were independently placed as the most basal lineage of B. mori and B. mandarina group. These results appear to indicate that an immediate ancestor for the domestic silkworm strains may have been originated from China and Korea.
        4.
        2013.10 구독 인증기관·개인회원 무료
        Silkworm transgenesis is now a routine method leading to a satisfactory yield of transformed animals and the reliable expression of transgenes during multiple successive generations. However, the screening of G1 transgenic individuals from numerous progeny has proved to be difficult and time-consuming work. Previously, we characterized the promoter of heat shock protein 70 from Bombyx mori (bHsp70), which is ubiquitously expressed in all tissues and developmental stages. To investigate the utilization of the bHsp70 promoter to screen transgenic individuals, the EGFP marker gene was inserted into the piggyBac vector under the control of the bHsp70 promoter. Mixtures of the donor and helper vectors were micro-injected into 3,060 eggs of bivoltine silkworms (Keomokjam). EGFP fluorescence was observed in 17 broods of transgenic silkworms under a florescence stereomicroscope. Interestingly, this fluorescent marker protein was detected not only in parts of the embryo segments on the seventh day of the G1 embryonic developmental stage but it was also detected in a part of the body of G1 hatched larvae, in the middle silk gland of G1 fifth instar larvae, and in the wings of seven-day-old G1 pupae and G1 moths. Therefore, we suggest that the bHsp70 promoter can be used for the rapid and simple screening of transgenic silkworms.
        5.
        2009.05 구독 인증기관·개인회원 무료
        Background: Proteolytic enzymes are involved in insect molting and metamorphosis and play a vital role in the programmed cell death of obsolete organs. Here we show the expression profile of cathepsin B in the fat body of the silkworm Bombyx mori during development. We also compared the expression profile of B. mori cathepsins B (BmCatB) and D (BmCatD) in the fat body during the larval-pupal transformation of B. mori in the BmCatB or BmCatD RNA interference (RNAi) process. Results: BmCatB is ecdysone-induced and expressed in the fat body of B. mori during the molting, and the larval-pupal and pupal-adult transformations, and its expression leads to programmed cell death. In particular, BmCatB is highly expressed in the fat body of B. mori during the larval-pupal transformation and BmCatB RNAi treatment resulted in the arrest of the larval-pupal transformation. RNAi-treated BmCatB knock-down sustained the expression of BmCatD during the larval-pupal transformation. On the other hand, BmCatD RNAi up-regulated the expression of BmCatB in the fat body of final instar larvae. Conclusion: Based on these results, we conclude that BmCatB is involved in the programmed cell death of the fat body during B. mori metamorphosis and that BmCatB and BmCatD contribute collaboratively to B. mori metamorphosis
        6.
        2008.10 구독 인증기관·개인회원 무료
        Metamorphosis is a development process involving the programmed cell death of obsolete larval organs. Aspartic proteinase cathepsin D (BmCatD) is involved in the silkworm Bombyx mori metamorphosis. Here we show a novel functional role of cysteine proteinase cathepsin B during B. mori metamorphosis. The B. mori cathepsin B (BmCatB) was expressed in the fat body, epidermis, ovary, testis, and hemocyte of the larval and pupal stages. The BmCatB was ecdysoneinduced, expressed in the fat body of the molting, the final larval instar and pupal stages, and its expression led to programmed cell death. RNA interference (RNAi)-mediated BmCatB knock-down inhibited the programmed cell death of larval and pupal fat body, resulting in the arrest of larval-pupal transformation. BmCatB RNAi is up-regulated the expression of BmCatD. Based on these results we concluded that BmCatB is critically involved in the histolysis of the larval and pupal fat body, indicating that BmCatB and BmCatD are mutally regulated during silkworm metamorphosis.