SiC-based composite materials with light weight, high durability, and high-temperature stability have been actively studied for use in aerospace and defense applications. Moreover, environmental barrier coating (EBC) technologies using oxide-based ceramic materials have been studied to prevent chemical deterioration at a high temperature of 1300℃ or higher. In this study, an ytterbium silicate material, which has recently been actively studied as an environmental barrier coating because of its high-temperature chemical stability, is fabricated on a sintered SiC substrate. Yb2O3 and SiO2 are used as the raw starting materials to form ytterbium disilicate (Yb2Si2O7). Suspension plasma spraying is applied as the coating method. The effect of the mixing method on the particle size and distribution, which affect the coating formation behavior, is investigated using a scanning electron microscope (SEM), an energy dispersive spectrometer (EDS), and X-ray diffraction (XRD) analysis. It is found that the originally designed compounds are not effectively formed because of the refinement and vaporization of the raw material particles, i.e., SiO2, and the formation of a porous coating structure. By changing the coating parameters such as the deposition distance, it is found that a denser coating structure can be formed at a closer deposition distance.
The microstructure and Cu diffusion barrier property of Ta-Si-N films for various Si and N compositions were studied. Ta-Si-N films of a wide range of compositions (Si: 0~30 at.%, N: 0~55 at.%) were deposited by DC magnetron reactive sputtering of Ta and Si targets. Deposition rates of Ta and Si films as a function of DC target current density for various N2/(Ar+N2) flow rate ratios were investigated. The composition of Ta-Si-N films was examined by wavelength dispersive spectroscopy (WDS). The variation of the microstructure of Ta-Si-N films with Si and N composition was examined by X-ray diffraction (XRD). The degree of crystallinity of Ta-Si-N films decreased with increasing Si and N composition. The Cu diffusion barrier property of Ta-Si-N films with more than sixty compositions was investigated. The Cu(100 nm)/Ta-Si-N(30 nm)/Si structure was used to investigate the Cu diffusion barrier property of Ta-Si-N films. The microstructure of all Cu/Ta-Si-N/Si structures after heat treatment for 1 hour at various temperatures was examined by XRD. A contour map that shows the diffusion barrier failure temperature for Cu as a function of Si and N composition was completed. At Si compositions ranging from 0 to 15 at.%, the Cu diffusion barrier property was best when the composition ratio of Ta + Si and N was almost identical.
Cu와 Si사이의 확산방지막으로 1000Å 두께의 TiN의 특성에 대하여 면저항 측정, 식각패임자국 관찰, X선 회절, AES, TEM 등을 이용하여 조사하였다. TiN 확산방지막은 550˚C, 1시간의 열처리 후에 Cu의 안쪽 확산으로 인해 Si(111)면을 따라 결정결함(전위)을 형성하고, 전위 주위에 Cu 실리사이드로 보이는 석출물들을 형성함으로써 파괴되었다. Al의 경우와는 달리 Si 패임자국이 형성되지 안흔 것으로부터 TiN확산방지막의 파괴는 Cu의 안쪽 확산에 의해서만 일어나는 것을 알 수 있었다. 또한, Al의 경우에는 우수한 확산방지막 특성을 보여주었던 충진처리된 TiN가 Cu의 경우에는 거의 효과가 없는 것을 알 수 있었다. 이것은 Al의 경우에는 TiN의 결정립계에 존재하는 TiO2가 Al과 반응하여 Al2O3를 형성함으로써 Al의 확산을 방해하는 화학적 효과가 매우 크지만, Cu의 경우에는 CuO 또는 Cu2O와 같은 Cu 산화물은TiO2에 비해서 열역학적으로 불안정하기 때문에 이러한 화학적 효과를 기대할 수 없으며, 따라서 충진처리 효과가 거의 없는 것으로 이해된다.
Al과 Si사이에서 Ti의 충진처리가 확산방지막 성능에 미치는 영향에 대해서 조사하였다. TiN의 충진처리는 450˚C의 N2 분위기에서 30분간 열처리함으로써 행하였다. TEM 분석을 통해 갓 증착된 TiN의 결정립 사이에는 약 10-20Å 정도의 고체물질이 없거나 TiN에 비해 밀도가 매우 낮은 공간이 존재함을 알 수 있었다. 또한 충진처리된 TiN의 경우에는 이러한 공간의 폭이 10Å 이하로 줄어듦을 알 수 있었다. RBS와 AES 분석에 의해 갓 증착된 TiN는 dir 7at.% 정도의 산소를 함유하고 있었고, 충진처리된 TiN는 약 10-15at.%의 산소를 함유하고 있었다. 갓 증착된 TiN와 충진처리된 TiN를 확산방지막으로 시험한 결과, 갓 증착된 TiN는 650˚C, 1시간의 열처리 후에 Al 스파이크와 Si 패임자국의 형성으로 이해 파괴되었다. 하지만 충진처리된 TiN의 경우에는 같은 열처리 조건에서 Al 스파이크나 Si 패임자국을 전혀 찾아볼수 없었다. 따라서, TiN의 충진처리가 Al과 Si사이에서 확산 방지막 성능을 크게 향상시켜주는 효과가 있음을 알 수 있었다. 이와 같은 충진처리 효과는 TiN의 결정립계의 간격이 줄어듦에 의해서 빠른 확산 경로인 결정립계를 통한 확산이 감소하는 것에 기인하는 것으로 이해된다.